Data mining of iron(II) and iron(III) bond-valence parameters, and their relevance for macromolecular crystallography

Using all available metal-containing organic compound structures in the Cambridge Structural Database, a novel data-driven method to derive bond-valence R 0 parameters was developed. While confirming almost all reference literature values, two distinct populations of FeII—N and FeIII—N bonds are observed, which are interpreted as low-spin and high-spin states of the coordinating iron. Based on the R 0 parameters derived here, guidelines for the modeling of iron–ligand distances in macromolecular structures are suggested.

[1]  George M Sheldrick,et al.  Is the bond-valence method able to identify metal atoms in protein structures? , 2003, Acta crystallographica. Section D, Biological crystallography.

[2]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[3]  Gus J. Palenik,et al.  Bond Valence Sums in Coordination Chemistry Using Oxidation-State-Independent R0 Values. A Simple Method for Calculating the Oxidation State of Iron in Fe−O Complexes , 1998 .

[4]  M. Swart Accurate Spin-State Energies for Iron Complexes. , 2008, Journal of chemical theory and computation.

[5]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[6]  R. Kruszyński,et al.  Bond-valence parameters of lanthanides. , 2006, Acta crystallographica. Section B, Structural science.

[7]  P. Rogers,et al.  Crystal structure of the S-nitroso form of liganded human hemoglobin. , 1998, Biochemistry.

[8]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[9]  J. Hajdu,et al.  Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. , 2005, Biochemistry.

[10]  N. Yasuoka,et al.  How a protein generates a catalytic radical from coenzyme B(12): X-ray structure of a diol-dehydratase-adeninylpentylcobalamin complex. , 2000, Structure.

[11]  S. D. de Visser,et al.  Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(I) oxidation state. , 2009, Physical chemistry chemical physics : PCCP.

[12]  H. Thorp,et al.  Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes , 1993 .

[13]  Robin Taylor,et al.  Deducing chemical structure from crystallographically determined atomic coordinates , 2011, Acta crystallographica. Section B, Structural science.

[14]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[15]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[16]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[17]  K. Abboud,et al.  Bond valence sums and structural studies of antimony complexes containing Sb bonded only to O ligands , 2005 .

[18]  R. Kruszyński,et al.  New bond-valence parameters for lanthanides. , 2004, Acta crystallographica. Section B, Structural science.

[19]  L. García-Rodríguez,et al.  Bond-valence parameters for ammonium-anion interactions. , 2000, Acta crystallographica. Section B, Structural science.

[20]  B. Alpert,et al.  An investigation by iron K‐edge spectroscopy of the oxidation state of iron in hemoglobin and its subunits , 1982, FEBS letters.

[21]  M. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. , 1984, Journal of molecular biology.

[22]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[23]  G. J. Palenik A critical evaluation of homo- and hetero-leptic cadmium complexes using bond valence sums , 2006 .

[24]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[25]  Jonathan A. Kitchen,et al.  Effect of counteranion X on the spin crossover properties of a family of diiron(II) triazole complexes [Fe(II)2(PMAT)2](X)4. , 2011, Inorganic chemistry.

[26]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[27]  A. Bianconi,et al.  Increase of the Fe effective charge in hemoproteins during oxygenation process. , 1985, Biochemical and biophysical research communications.

[28]  Heping Zheng,et al.  Data mining of metal ion environments present in protein structures. , 2008, Journal of inorganic biochemistry.

[29]  Motherwell,et al.  The assignment and validation of metal oxidation states in the Cambridge Structural Database , 2000, Acta crystallographica. Section B, Structural science.