Variance-Optimal Hedging for Processes with Stationary Independent Increments

We determine the variance-optimal hedge when the logarithm of the underlying price follows a process with stationary independent increments in discrete or continuous time. Although the general solution to this problem is known as backward recursion or backward stochastic differential equation, we show that for this class of processes the optimal endowment and strategy can be expressed more explicitly. The corresponding formulas involve the moment resp. cumulant generating function of the underlying process and a Laplace- or Fourier-type representation of the contingent claim. An example illustrates that our formulas are fast and easy to evaluate numerically.

[1]  Morten Ørregaard Nielsen,et al.  Local empirical spectral measure of multivariate processes with long range dependence , 2004 .

[2]  Jan Kallsen,et al.  Optimal portfolios for exponential Lévy processes , 2000, Math. Methods Oper. Res..

[3]  M. Nielsen Efficient Inference in Multivariate Fractionally Integrated Time Series Models , 2004 .

[4]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[5]  W. Schachermayer Optimal investment in incomplete markets when wealth may become negative , 2001 .

[6]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[7]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[8]  Martin Schweizer,et al.  Variance-Optimal Hedging in Discrete Time , 1995, Math. Oper. Res..

[9]  Jakša Cvitanić,et al.  Super-replication in stochastic volatility models under portfolio constraints , 1999, Journal of Applied Probability.

[10]  D. Heath,et al.  Introduction to Mathematical Finance , 2000 .

[11]  D. Duffie,et al.  Mean-variance hedging in continuous time , 1991 .

[12]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[13]  R. Frey,et al.  Bounds on European Option Prices under Stochastic Volatility , 1999 .

[14]  Ernst Eberlein,et al.  On the range of options prices , 1997, Finance Stochastics.

[15]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[16]  Jan Kallsen,et al.  The cumulant process and Esscher's change of measure , 2002, Finance Stochastics.

[17]  M. Schweizer Option hedging for semimartingales , 1991 .

[18]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[19]  A. Neuberger,et al.  The Log Contract , 1994 .

[20]  Hans Föllmer,et al.  Efficient hedging: Cost versus shortfall risk , 2000, Finance Stochastics.

[21]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[22]  Orazio Di Miscia Term structure of interest models: concept and estimation problem in a continuous-time setting , 2005 .

[23]  Charlotte Christiansen,et al.  Volatility-Spillover Effects in European Bond Markets , 2003 .

[24]  Manfred Schäl,et al.  On Quadratic Cost Criteria for Option Hedging , 1994, Math. Oper. Res..

[25]  C. Stricker,et al.  ${\scr E}$-martingales and their applications in mathematical finance , 1998 .

[26]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[27]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[28]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[29]  Aleš Černý,et al.  The Risk of Optimal, Continuously Rebalanced Hedging Strategies and Its Efficient Evaluation Via Fourier Transform , 2002 .

[30]  L. Foldes,et al.  Conditions for Optimality in the Infinite-Horizon Portfolio-cum-Saving Problem with Semimartingale Investments , 1990 .

[31]  T. Busch A robust LR test for the GARCH model , 2005 .

[32]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[33]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[34]  Thomas A. Fetherston,et al.  European Fixed Income Markets : Money, Bond and Interest Rate Derivatives , 2004 .

[35]  G. Peskir ON THE AMERICAN OPTION PROBLEM , 2005 .

[36]  Michael Sørensen,et al.  Estimation for discretely observed diffusions using transform functions , 2003, Journal of Applied Probability.

[37]  E. Eberlein,et al.  Some Analytic Facts on the Generalized Hyperbolic Model , 2001 .

[38]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[39]  Carina Sponholtz The Information Content of Earnings Announcements in Denmark , 2004 .

[40]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[41]  Jan Kallsen,et al.  Optimal portfolios for logarithmic utility , 2000 .

[42]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[43]  M. Schweizer A guided tour through quadratic hedging approaches , 1999 .

[44]  Hans Föllmer,et al.  Hedging by Sequential Regression: An Introduction to the Mathematics of Option Trading , 1988 .

[45]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[46]  J. Kallsen Duality Links between Portfolio Optimization and Derivative Pricing , 1998 .

[47]  Christophe Stricker,et al.  Lois de martingale, densités et décomposition de Föllmer Schweizer , 1992 .

[48]  P. Protter Stochastic integration and differential equations , 1990 .

[49]  M. Svenstrup,et al.  Efficient Control Variates and Strategies for Bermudan Swaptions in a LIBOR Market Model , 2003 .

[50]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[51]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[52]  L. Foldes Existence and uniqueness of an optimum in the infinite-horizon portfolio-cum-saving model with semimartingale investments , 1992 .

[53]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[54]  C. Stricker,et al.  Follmer-Schweizer Decomposition and Mean-Variance Hedging for General Claims , 1995 .

[55]  Goran Peskir,et al.  The Russian option: Finite horizon , 2005, Finance Stochastics.

[56]  Martin Schweizer,et al.  Approximating random variables by stochastic integrals , 1994 .

[57]  J. Kallsen,et al.  A Complete Explicit Solution to the Log-Optimal Portfolio Problem , 2003 .

[58]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[59]  G. Doetsch Handbuch der Laplace-Transformation , 1950 .

[60]  Hui Wang,et al.  Utility maximization in incomplete markets with random endowment , 2001, Finance Stochastics.

[61]  Tom Engsted,et al.  Speculative Bubbles in Stock Prices? Tests Based on the Price-Dividend Ratio , 2004 .

[62]  Harald Cramér,et al.  On the representation of a function by certain Fourier integrals , 1939 .

[63]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[64]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[65]  Jan Kallsen A utility maximization approach to hedging in incomplete markets , 1999, Math. Methods Oper. Res..

[66]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[67]  J. Cooper Handbuch der Laplace-Transformation, Bd. I: Theorie der Laplace-Transformation , 1952, The Mathematical Gazette.

[68]  W. Rudin Real and complex analysis , 1968 .

[69]  M. Nielsen Spectral Analysis of Fractionally Cointegrated Systems , 2002 .