The cation selectivity of the ZIP transporters.

[1]  V. López,et al.  Mapping the zinc‐transporting system in mammary cells: Molecular analysis reveals a phenotype‐dependent zinc‐transporting network during lactation , 2012, Journal of cellular physiology.

[2]  R. Franklin,et al.  Evidence for Changes in RREB-1, ZIP3, and Zinc in the Early Development of Pancreatic Adenocarcinoma , 2012, Journal of Gastrointestinal Cancer.

[3]  D. Eide An “Inordinate Fondness for Transporters” Explained? , 2012, Science Signaling.

[4]  R. Dempski,et al.  The human ZIP4 transporter has two distinct binding affinities and mediates transport of multiple transition metals. , 2012, Biochemistry.

[5]  N. Barkai,et al.  The Competitive Advantage of a Dual-Transporter System , 2011, Science.

[6]  R. Cousins,et al.  Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. , 2011, American journal of physiology. Cell physiology.

[7]  T. Hirano,et al.  Biochemical Characterization of Human ZIP13 Protein , 2011, The Journal of Biological Chemistry.

[8]  M. Knutson,et al.  Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver , 2011, BioMetals.

[9]  P. Trombley,et al.  Zinc modulation of glycine receptors , 2011, Neuroscience.

[10]  T. Kambe An Overview of a Wide Range of Functions of ZnT and Zip Zinc Transporters in the Secretory Pathway , 2011, Bioscience, biotechnology, and biochemistry.

[11]  C. Fenselau,et al.  Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. , 2011, Journal of inorganic biochemistry.

[12]  A. Palmer,et al.  Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors , 2011, Proceedings of the National Academy of Sciences.

[13]  S. Kelleher,et al.  Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. , 2011, The Journal of nutrition.

[14]  J. Argüello,et al.  The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function , 2011, BioMetals.

[15]  M. Knutson,et al.  ZRT/IRT-like Protein 14 (ZIP14) Promotes the Cellular Assimilation of Iron from Transferrin* , 2010, The Journal of Biological Chemistry.

[16]  David P. Davis,et al.  Zinc Finger Nucleases as tools to understand and treat human diseases , 2010, BMC medicine.

[17]  Rodrigo Lopez,et al.  A new bioinformatics analysis tools framework at EMBL–EBI , 2010, Nucleic Acids Res..

[18]  A. Bush,et al.  Zinc in the physiology and pathology of the CNS , 2009, Nature Reviews Neuroscience.

[19]  Yuan Li,et al.  Coordination dynamics of zinc in proteins. , 2009, Chemical reviews.

[20]  S. Küry,et al.  An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica , 2009, Human mutation.

[21]  S. Masuda,et al.  SLC39A9 (ZIP9) Regulates Zinc Homeostasis in the Secretory Pathway: Characterization of the ZIP Subfamily I Protein in Vertebrate Cells , 2009, Bioscience, biotechnology, and biochemistry.

[22]  R. Nicholson,et al.  Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. , 2009, Trends in molecular medicine.

[23]  C. Curie,et al.  Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells , 2009, Planta.

[24]  W. Maret Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals , 2009, BioMetals.

[25]  J. Cerhan,et al.  Polymorphisms in Mitochondrial Genes and Prostate Cancer Risk , 2008, Cancer Epidemiology Biomarkers & Prevention.

[26]  G. Andrews,et al.  Novel Proteolytic Processing of the Ectodomain of the Zinc Transporter ZIP4 (SLC39A4) during Zinc Deficiency Is Inhibited by Acrodermatitis Enteropathica Mutations , 2008, Molecular and Cellular Biology.

[27]  N. Elçioglu,et al.  Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. , 2008, American journal of human genetics.

[28]  D. Nebert,et al.  Slc39a14 Gene Encodes ZIP14, A Metal/Bicarbonate Symporter: Similarities to the ZIP8 Transporter , 2008, Molecular Pharmacology.

[29]  S. Kelleher,et al.  Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions , 2008, Brain Research.

[30]  D. Nebert,et al.  Cd2+ versus Zn2+ uptake by the ZIP8 HCO3--dependent symporter: kinetics, electrogenicity and trafficking. , 2008, Biochemical and biophysical research communications.

[31]  Benjamin P. Weaver,et al.  Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5) , 2007, Biological chemistry.

[32]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[33]  D. Fu,et al.  Structure of the Zinc Transporter YiiP , 2007, Science.

[34]  G. Perozzi,et al.  Zinc fluxes and zinc transporter genes in chronic diseases. , 2007, Mutation research.

[35]  D. Salt,et al.  Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell‐specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis , 2007, Genesis.

[36]  D. Eide,et al.  A Histidine-rich Cluster Mediates the Ubiquitination and Degradation of the Human Zinc Transporter, hZIP4, and Protects against Zinc Cytotoxicity* , 2007, Journal of Biological Chemistry.

[37]  R. Franklin,et al.  Histidine residues in the region between transmembrane domains III and IV of hZip1 are required for zinc transport across the plasma membrane in PC-3 cells. , 2006, Biochimica et biophysica acta.

[38]  R. Cousins,et al.  Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells , 2006, Proceedings of the National Academy of Sciences.

[39]  W. Maret,et al.  Zinc-buffering capacity of a eukaryotic cell at physiological pZn , 2006, JBIC Journal of Biological Inorganic Chemistry.

[40]  D. Nebert,et al.  ZIP8, Member of the Solute-Carrier-39 (SLC39) Metal-Transporter Family: Characterization of Transporter Properties , 2006, Molecular Pharmacology.

[41]  Charles P. Fontaine,et al.  Evidence for pH dependent Zn2+influx in K562 erythroleukemia cells: studies using ZnAF-2F fluorescence and 65Zn2+ uptake. , 2005, Archives of biochemistry and biophysics.

[42]  G. Andrews,et al.  Generation and Characterization of Mice Lacking the Zinc Uptake Transporter ZIP3 , 2005, Molecular and Cellular Biology.

[43]  S. Kelleher,et al.  Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. , 2005, The Journal of nutrition.

[44]  Liping Huang,et al.  The ZIP7 Gene (Slc39a7) Encodes a Zinc Transporter Involved in Zinc Homeostasis of the Golgi Apparatus* , 2005, Journal of Biological Chemistry.

[45]  Xiaoqing Chang,et al.  Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Nicholson,et al.  Structure–function analysis of a novel member of the LIV‐1 subfamily of zinc transporters, ZIP14 , 2005, FEBS letters.

[47]  D. Eide,et al.  The Mammalian Zip5 Protein Is a Zinc Transporter That Localizes to the Basolateral Surface of Polarized Cells* , 2004, Journal of Biological Chemistry.

[48]  G. Andrews,et al.  The Adaptive Response to Dietary Zinc in Mice Involves the Differential Cellular Localization and Zinc Regulation of the Zinc Transporters ZIP4 and ZIP5* , 2004, Journal of Biological Chemistry.

[49]  D. Eide,et al.  Zinc-stimulated Endocytosis Controls Activity of the Mouse ZIP1 and ZIP3 Zinc Uptake Transporters* , 2004, Journal of Biological Chemistry.

[50]  D. Fu,et al.  Thermodynamic Studies of the Mechanism of Metal Binding to the Escherichia coli Zinc Transporter YiiP* , 2004, Journal of Biological Chemistry.

[51]  R. Franklin,et al.  Metallothionein can function as a chaperone for zinc uptake transport into prostate and liver mitochondria. , 2004, Journal of inorganic biochemistry.

[52]  D. Eide,et al.  Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. , 2004, Human molecular genetics.

[53]  D. Eide,et al.  Zn2+-stimulated Endocytosis of the mZIP4 Zinc Transporter Regulates Its Location at the Plasma Membrane* , 2004, Journal of Biological Chemistry.

[54]  R. Palmiter,et al.  Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers , 2004, Pflügers Archiv.

[55]  D. Eide The SLC39 family of metal ion transporters , 2004, Pflügers Archiv.

[56]  Andreas Rolfs,et al.  The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins , 2004, Pflügers Archiv.

[57]  D. Eide,et al.  Structure, Function, and Regulation of a Subfamily of Mouse Zinc Transporter Genes* , 2003, Journal of Biological Chemistry.

[58]  D. Eide,et al.  The Acrodermatitis Enteropathica Gene ZIP4 Encodes a Tissue-specific, Zinc-regulated Zinc Transporter in Mice* , 2003, Journal of Biological Chemistry.

[59]  R. Franklin,et al.  Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. , 2003, Journal of inorganic biochemistry.

[60]  R. Nicholson,et al.  The LZT proteins; the LIV-1 subfamily of zinc transporters. , 2003, Biochimica et biophysica acta.

[61]  S. Lippard,et al.  ZP4, an improved neuronal Zn2+ sensor of the Zinpyr family. , 2003, Journal of the American Chemical Society.

[62]  K. Toyoshima,et al.  Mycobacterium bovis BCG cell wall and lipopolysaccharide induce a novel gene, BIGM103, encoding a 7-TM protein: identification of a new protein family having Zn-transporter and Zn-metalloprotease signatures. , 2002, Genomics.

[63]  M. Gerstein,et al.  Genomic analysis of membrane protein families: abundance and conserved motifs , 2002, Genome Biology.

[64]  J. Gitschier,et al.  A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. , 2002, American journal of human genetics.

[65]  Stéphane Bézieau,et al.  Identification of SLC39A4, a gene involved in acrodermatitis enteropathica , 2002, Nature Genetics.

[66]  C. Beaumont,et al.  Differential subcellular localization of hZip1 in adherent and non‐adherent cells , 2001, FEBS letters.

[67]  R. Cousins,et al.  Effects of intracellular zinc depletion on metallothionein and ZIP2 transporter expression and apoptosis , 2001, Journal of leukocyte biology.

[68]  D. Eide,et al.  Eukaryotic zinc transporters and their regulation , 2001, Biometals.

[69]  D. Eide,et al.  The Human ZIP1 Transporter Mediates Zinc Uptake in Human K562 Erythroleukemia Cells* , 2001, The Journal of Biological Chemistry.

[70]  K. Doheny,et al.  Homozygosity mapping places the acrodermatitis enteropathica gene on chromosomal region 8q24.3. , 2001, American journal of human genetics.

[71]  D. Eide,et al.  Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae , 2000, The EMBO journal.

[72]  M. Guerinot The ZIP family of metal transporters. , 2000, Biochimica et biophysica acta.

[73]  K. Taylor LIV‐1 Breast Cancer Protein Belongs to New Family of Histidine‐Rich Membrane Proteins with Potential to Control Intracellular Zn2+ Homeostasis , 2000, IUBMB life.

[74]  D. Engelman,et al.  The GxxxG motif: a framework for transmembrane helix-helix association. , 2000, Journal of molecular biology.

[75]  D. Eide,et al.  Functional Expression of the Human hZIP2 Zinc Transporter* , 2000, The Journal of Biological Chemistry.

[76]  J. Ragoussis,et al.  Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex. , 1999, Genomics.

[77]  R. Cousins,et al.  Mammalian zinc transporters. , 1998, Annual review of nutrition.

[78]  D. Eide,et al.  The ZRT2 Gene Encodes the Low Affinity Zinc Transporter in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[79]  D. Eide,et al.  A novel iron-regulated metal transporter from plants identified by functional expression in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Eide,et al.  The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Grider,et al.  The effect of the acrodermatitis enteropathica mutation on zinc uptake in human fibroblasts , 1995, Biological Trace Element Research.

[82]  D. Hodgson,et al.  Light‐induced carotenogenesis in Myxococcus xanthus: DNA sequence analysis of the carR region , 1993, Molecular microbiology.

[83]  R. Rakowski Charge movement by the Na/K pump in Xenopus oocytes , 1993, The Journal of general physiology.

[84]  W. Schwarz,et al.  A negative slope in the current-voltage relationship of the Na+/K+ pump inXenopus oocytes produced by reduction of external [K+] , 1991, The Journal of Membrane Biology.

[85]  C. Ortiz,et al.  Electrogenic behavior of the human red cell Ca2+ pump revealed by disulfonic stilbenes , 1988, The Journal of Membrane Biology.

[86]  W. Ray,et al.  The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. , 1987, The Journal of biological chemistry.

[87]  H. Rasmussen,et al.  The role of band III in calcium transport across the human erythrocyte membrane , 1982, FEBS letters.

[88]  J. Chmielnicka,et al.  Variation of the level of mercury and metallothionein in the kidneys and liver of rats with time of exposure to sodium selenite , 1980, Biological Trace Element Research.

[89]  B. Vallee,et al.  Biochemistry, physiology and pathology of zinc. , 1959, Physiological reviews.

[90]  J. Böök,et al.  Rh Incompatibility and Mental Deficiency , 1945, American journal of human genetics.

[91]  P. Kaler,et al.  Molecular cloning and functional characterization of novel zinc transporter rZip10 (Slc39a10) involved in zinc uptake across rat renal brush-border membrane. , 2007, American journal of physiology. Renal physiology.

[92]  B. Vallee,et al.  Zinc metallochemistry in biochemistry. , 1995, EXS.

[93]  N. Nomura,et al.  Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121-KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1. , 1995, DNA research : an international journal for rapid publication of reports on genes and genomes.

[94]  S. Hopfer,et al.  Acute nickel toxicity in electroplating workers who accidently ingested a solution of nickel sulfate and nickel chloride. , 1988, American journal of industrial medicine.