Ternary Free-Energy Entropic Lattice Boltzmann Model with a High Density Ratio.

A thermodynamically consistent free energy model for fluid flows comprised of one gas and two liquid components is presented and implemented using the entropic lattice Boltzmann scheme. The model allows a high density ratio, up to the order of O(10^{3}), between the liquid and gas phases, and a broad range of surface tension ratios, covering partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of the fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive, and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.

[1]  Haibo Huang,et al.  Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Jing Li,et al.  Symmetry breaking in drop bouncing on curved surfaces , 2015, Nature Communications.

[3]  I. Roisman,et al.  Binary collisions of drops of immiscible liquids , 2011, Journal of Fluid Mechanics.

[4]  Maria Fernandino,et al.  Using Cahn-Hilliard mobility to simulate coalescence dynamics , 2010, Comput. Math. Appl..

[5]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[6]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[7]  Ronghou Liu,et al.  Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method , 2014 .

[8]  C. Law,et al.  ON THE BURNING CHARACTERISTICS OF COLLISION-GENERATED WATER/HEXADECANE DROPLETS , 2004 .

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  Gareth H. McKinley,et al.  Droplet mobility on lubricant-impregnated surfaces , 2013 .

[11]  David Quéré,et al.  Slippery pre-suffused surfaces , 2011 .

[12]  H. Kusumaatmaja,et al.  Apparent contact angle and contact angle hysteresis on liquid infused surfaces. , 2016, Soft matter.

[13]  Charles M. Elliott,et al.  Numerical analysis of a model for phase separation of a multi- component alloy , 1996 .

[14]  Z. Chai,et al.  Lattice Boltzmann modeling of three-phase incompressible flows. , 2016, Physical review. E.

[15]  Li-Shi Luo,et al.  A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades , 2017, J. Comput. Phys..

[16]  Laura Schaefer,et al.  Lattice Boltzmann equation model for multi-component multi-phase flow with high density ratios , 2013 .

[17]  Timm Krüger,et al.  Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles. , 2015, Physical review. E.

[18]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[19]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Alexander J. Wagner,et al.  Breakdown of Scale Invariance in the Coarsening of Phase-Separating Binary Fluids , 1998 .

[21]  Qiang Du,et al.  Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility , 2016, J. Comput. Phys..

[22]  Luca Biferale,et al.  Stick-slip sliding of water drops on chemically heterogeneous surfaces. , 2013, Physical review letters.

[23]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[24]  M. Lai,et al.  Controlling droplet bouncing and coalescence with surfactant , 2016, Journal of Fluid Mechanics.

[25]  Chunfeng Zhou,et al.  Sharp-interface limit of the Cahn–Hilliard model for moving contact lines , 2010, Journal of Fluid Mechanics.

[26]  Franck Boyer,et al.  Study of a three component Cahn-Hilliard flow model , 2006 .

[27]  I. Karlin,et al.  Entropic lattice boltzmann method for multiphase flows. , 2015, Physical review letters.

[28]  D. Harrar,et al.  799 , 2019, Critical Care Medicine.

[29]  S. Fielding,et al.  Moving contact line dynamics: from diffuse to sharp interfaces , 2015, Journal of Fluid Mechanics.

[30]  Hang Ding,et al.  Wetting condition in diffuse interface simulations of contact line motion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. E. Cates,et al.  3D spinodal decomposition in the inertial regime , 1999, cond-mat/9902346.

[32]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Rong-Horng Chen,et al.  Collision between immiscible drops with large surface tension difference: diesel oil and water , 2006 .

[34]  Suchuan Dong,et al.  Wall-bounded multiphase flows of N immiscible incompressible fluids: Consistency and contact-angle boundary condition , 2016, J. Comput. Phys..

[35]  S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2001 .

[36]  Ching-Long Lin,et al.  A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio , 2005 .

[37]  Laura Schaefer,et al.  Equations of state in a lattice Boltzmann model , 2006 .

[38]  Bruce D. Jones,et al.  Multiphase lattice Boltzmann simulations for porous media applications , 2014, Computational Geosciences.

[39]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[40]  Lin Liu,et al.  Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces , 2010, J. Comput. Phys..

[41]  Xinzhu Wang,et al.  Wetting boundary conditions in numerical simulation of binary fluids by using phase‐field method: some comparative studies and new development , 2013, 1310.8412.

[42]  J. Katz,et al.  Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks , 2015, Journal of Fluid Mechanics.

[43]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[44]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[45]  Kai H. Luo,et al.  Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid–vapor flows , 2014 .

[46]  T. Inamuro,et al.  Lattice Boltzmann simulation of droplet collision dynamics , 2004 .

[47]  Rong Horng Chen,et al.  Diesel–diesel and diesel–ethanol drop collisions , 2007 .