Moving Horizon Estimators for Large-Scale Systems

In this report, a review on state estimation schemes applied to large-scale systems is made. The attention is focused on Moving Horizon Estimation (MHE) schemes due to the addressing of the estimation problem in an optimal way, and it inherent capability to handle the process constraints. Moreover, the cost function can be proposed unlike other optimal estimation schemes like those based on Kalman Filters. Therefore, contributions on state estimation schemes applied to large-scale systems are described, in order to outline its merits and limitations. Finally, open problems are listed with the aim to prepare a basis for future contributions.

[1]  Mazen Alamir,et al.  On the use of non-linear receding-horizon observers in batch terpolymerisation processes , 2008, Int. J. Model. Identif. Control..

[2]  Wei Kang,et al.  Moving horizon numerical observers of nonlinear control systems , 2006, IEEE Transactions on Automatic Control.

[3]  Arthur G. O. Mutambara,et al.  Decentralized Estimation and Control for Multisensor Systems , 2019 .

[4]  Michael Kawohl,et al.  Model based estimation and optimal control of fed-batch fermentation processes for the production of antibiotics , 2007 .

[5]  Moritz Diehl,et al.  A Moving Horizon State Estimation algorithm applied to the Tennessee Eastman Benchmark Process , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[6]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[7]  Y. Candau,et al.  Bounded error moving horizon state estimator for non-linear continuous-time systems: application to a bioprocess system , 2005 .

[8]  D. Mayne,et al.  Moving horizon observer-based control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[9]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[10]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[11]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[12]  C. Sanders,et al.  A new class of decentralized filters for interconnected systems , 1974 .

[13]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[14]  Mazen Alamir,et al.  Further results on nonlinear receding-horizon observers , 2002, IEEE Trans. Autom. Control..

[15]  C.-F. Cheng Design of robust observation schemes for uncertain large scale systems , 1997 .

[16]  D. Siljak,et al.  Decentralization, Stabilization, and Estimation of Large-Scale Linear Systems , 1976 .

[17]  William L. Luyben,et al.  Plantwide control design procedure , 1997 .

[18]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[19]  J. Rawlings,et al.  Nonlinear Moving Horizon State Estimation , 1995 .

[20]  Decentralized estimators for a large scale dynamic system , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[21]  S. Katti Comments on "Decentralization, stabilization, and estimation of large scale linear systems" , 1982 .

[22]  J. B. Jørgensen,et al.  Numerical Methods for Large Scale Moving Horizon Estimation and Control , 2004 .

[23]  J.D. Hedengren,et al.  Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor , 2007, 2007 American Control Conference.

[24]  C. Sanders,et al.  Specific structures for large-scale state estimation algorithms having information exchange , 1978 .

[25]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[26]  Mazen Alamir,et al.  Nonlinear Moving Horizon Observers: Theory and Real-Time Implementation , 2007 .

[27]  Juergen Hahn,et al.  Computation of arrival cost for moving horizon estimation via unscented Kalman filtering , 2009 .

[28]  Keck Voon Ling,et al.  Receding horizon recursive state estimation , 1999, IEEE Trans. Autom. Control..

[29]  Bjarne A. Foss,et al.  A modular system for estimation and diagnosis , 1997 .

[30]  L. Biegler,et al.  A FAST COMPUTATIONAL FRAMEWORK FOR LARGE-SCALE MOVING HORIZON ESTIMATION , 2007 .

[31]  Hans Bock,et al.  Efficient moving horizon state and parameter estimation for SMB processes , 2009 .

[32]  Francis J. Doyle,et al.  A distributed state estimation and control algorithm for plantwide processes , 2003, IEEE Trans. Control. Syst. Technol..

[33]  Francis J. Doyle,et al.  Structural analysis of large-scale systems for distributed state estimation and control applications , 2003 .

[34]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[35]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[36]  Douglas C. Schmidt,et al.  Ultra-Large-Scale Systems: The Software Challenge of the Future , 2006 .

[37]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[38]  Brice Carnahan,et al.  A Partially Decentralized State Observer and Its Parallel Computer Implementation , 1998 .

[39]  P. Varaiya,et al.  Distributed Estimation , 1982, 1982 American Control Conference.

[40]  Mazen Alamir,et al.  Nonlinear receding-horizon state estimation for dispersive adsorption columns with nonlinear isotherm , 2003 .

[41]  D. Gorinevsky,et al.  Model predictive estimation of evolving faults , 2006, 2006 American Control Conference.

[42]  Moritz Diehl,et al.  Nonlinear model predictive control with moving horizon state and disturbance estimation - Application to the normalization of blood glucose in the critically ill , 2008 .