A control system for automated multiscale measuring systems

Abstract Quality inspection of micro systems on wafer scale must cope with conflicting demands: nanometer accuracy and high velocity in a comparatively large workspace. An Automated Multiscale Measuring System (AMMS) combines multiple sensors that operate at specific scales by an intelligent measurement strategy in order to balance speed and accuracy. The AMMS demonstrator is based on a modified Mahr MFU 100 with a position and tilt deflection measurement resolution of 1 nm. In this paper multiscale models of a horizontal axis with an operating range of 200 mm and their application to state linearization and control parameterization of the residual dynamics according to multiscale sensor system characteristics are developed and discussed. Main modeling issues are sliding and submicron presliding friction for model-based compensation and control, reaching from submicron positioning to high-velocity trajectory tracking with desired performance. A new experimental design for the identification of presliding friction parameters and a higher-order friction calculator are presented. Experimental results show the effectiveness of this approach.

[1]  Robert J. Hocken,et al.  Characterization and compensation of dynamic errors of a scanning coordinate measuring machine , 2007 .

[2]  P. Dahl A Solid Friction Model , 1968 .

[3]  A. Weckenmann,et al.  Productive Metrology - Adding Value to Manufacture , 2005 .

[4]  Jan Swevers,et al.  The generalized Maxwell-slip model: a novel model for friction Simulation and compensation , 2005, IEEE Transactions on Automatic Control.

[5]  J Zhao,et al.  Research on high-speed measurement accuracy of coordinate measuring machines , 2005 .

[6]  F. Al-Bender,et al.  Characterization of friction force dynamics , 2008, IEEE Control Systems.

[7]  Vincent Hayward,et al.  Discrete-Time Elasto-Plastic Friction Estimation , 2009, IEEE Transactions on Control Systems Technology.

[8]  M. Tomizuka,et al.  Projection-Based Iterative Learning Control for Wafer Scanner Systems , 2009, IEEE/ASME Transactions on Mechatronics.

[9]  Oliver Sawodny,et al.  Sensor and actuator conditioning for multiscale measurement systems on example of confocal microscopy , 2009, Optical Metrology.

[10]  Carlos Canudas-de-Wit,et al.  PASSIVITY ANALYSIS OF A MOTION CONTROL FOR ROBOT MANIPULATORS WITH DYNAMIC FRICTION , 2007 .

[11]  Karl Johan Åström,et al.  Friction generated limit cycles , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[12]  Paolo Rocco,et al.  Single and multistate integral friction models , 2004, IEEE Transactions on Automatic Control.

[13]  Bernard Friedland,et al.  On the Modeling and Simulation of Friction , 1990, 1990 American Control Conference.

[14]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[15]  Wolfgang Osten,et al.  Scaled topometry in a multisensor approach , 2004 .

[16]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[17]  Yong Xiao,et al.  Generalized synchronization control of multi-axis motion systems , 2005 .

[18]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[19]  Sunan Huang,et al.  Adaptive friction compensation with a time-delay friction model , 2004 .

[20]  Debasish Dutta,et al.  Dynamic Error Characterization for Non-Contact Dimensional Inspection Systems , 2008 .

[21]  F. Al-Bender,et al.  Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back. , 2004, Chaos.

[22]  Pi-Cheng Tung,et al.  Studies of Stick-Slip Friction, Presliding Displacement, and Hunting , 2002 .

[23]  Kok Kiong Tan,et al.  Adaptive Friction Compensation With a Dynamical Friction Model , 2011, IEEE/ASME Transactions on Mechatronics.

[24]  Bin Yao,et al.  Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model , 2009, Autom..

[25]  Leonid B. Freidovich,et al.  LuGre-Model-Based Friction Compensation , 2010, IEEE Transactions on Control Systems Technology.

[26]  Jan Zimmermann,et al.  FRICTION MODELLING FOR CONTROL OF A LINEAR HIGH-PRECISION ACTUATOR , 2006 .

[27]  Shigenori Sano,et al.  Time-optimal trajectory generation and contouring control for machine tool feed drive systems , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[28]  Maarten Steinbuch,et al.  Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model , 2003, Autom..

[29]  M. Siemiatkowski,et al.  Simulation studies of process flow with in-line part inspection in machining cells , 2006 .

[30]  H Temeltas,et al.  State Observation for Elastoplastic Friction Models in Positioning Systems by Utilizing Leunberger Observers , 2006 .

[31]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[32]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[33]  Oliver Sawodny,et al.  Modeling for Simulation and Control of a X-Y High Precision Positioning Table , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[34]  Oliver Sawodny,et al.  Kinodynamic planning - an analytical approximation with Cn polynomials for industrial application , 2008, 2008 IEEE International Conference on Control Applications.

[35]  Laine Mears,et al.  Quality and Inspection of Machining Operations: CMM Integration to the Machine Tool , 2009 .

[36]  Béla Lantos,et al.  Control of mechanical systems with Stribeck friction and backlash , 2009, Syst. Control. Lett..

[37]  Xiangqian Jiang,et al.  Multisensor data fusion in dimensional metrology , 2009 .

[38]  Wolfgang Osten,et al.  Fusion multimodaler Daten am Beispiel eines Mikrolinsen-Arrays (Multimodal Data Fusion Exemplified on a Microlens Array) , 2008 .

[39]  C. Canudas-de-Wit Comments on "A new model for control of systems with friction" , 1998, IEEE Trans. Autom. Control..

[40]  M.K. Jouaneh,et al.  Dynamic Modeling of a Two-Axis, Parallel, H-Frame-Type XY Positioning System , 2010, IEEE/ASME Transactions on Mechatronics.

[41]  Romeo Ortega,et al.  Necessary and sufficient conditions for passivity of the LuGre friction model , 2000, IEEE Trans. Autom. Control..

[42]  Hideki Yanada,et al.  Modeling of dynamic behaviors of friction , 2008 .

[43]  Akira Shimokohbe,et al.  Double-integrator control for precision positioning in the presence of friction , 2003 .

[44]  K.J. Astrom,et al.  Revisiting the LuGre friction model , 2008, IEEE Control Systems.

[45]  Hans J. Tiziani,et al.  Confocal principle for macro- and microscopic surface and defect analysis , 2000 .

[46]  Uwe Zeitner,et al.  Next-generation test equipment for micro-production , 2010, Photonics Europe.

[47]  Robert Schmitt,et al.  Geometric error measurement and compensation of machines : an update , 2008 .

[48]  C. A. Brockley,et al.  The role of the rate of application of the tangential force in determining the static friction coefficient , 1973 .