Relativistic ionization characteristics of laser-driven hydrogenlike ions

In this contribution, we investigate the relativistic ionization characteristics of highly charged hydrogenlike ions in short intense laser pulses as a function of the laser pulse parameters by means of the numerical solution of the time-dependent Dirac equation and the time-dependent Klein-Gordon equation as well as by the classical phase-space averaging method. For this purpose, we generalize the phase-space averaging method such that it is applicable to relativistically driven particles in arbitrary central potentials. If the ionization probability is not too small, quantum mechanical and classical methods give similar results for laser wavelengths in the range from the near-infrared to soft x-ray radiation. We find that ionization in few-cycle intense laser pulses depends sensitively on the pulses' peak intensity but little on the pulse tails and on the pulse energy. The ionization probability is shown to be strongly linked to the peak intensity allowing for an estimation of the laser intensity via ionization yields.

[1]  T. Brabec,et al.  Semiclassical Dirac theory of tunnel ionization. , 2002, Physical review letters.

[2]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[3]  C. Keitel,et al.  Ionization dynamics versus laser intensity in laser-driven multiply charged ions. , 2009, Physical review letters.

[4]  H. W. Schranz,et al.  An efficient microcanonical sampling procedure for molecular systems , 1991 .

[5]  J. Tisch,et al.  High Energy Ion Explosion of Atomic Clusters: Transition from Molecular to Plasma Behavior , 1997 .

[6]  Rainer Grobe,et al.  Numerical approach to solve the time-dependent Dirac equation , 1999 .

[7]  Christoph H. Keitel,et al.  Relativistic high-power laser–matter interactions , 2006 .

[8]  R. P. Singhal,et al.  Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers , 2003, Science.

[9]  W. Sandner,et al.  Strong laser field ionization of Kr: first-order relativistic effects defeat rescattering , 2005 .

[10]  Snyder,et al.  Intense Field-Matter Interactions: Multiple Ionization of Clusters. , 1996, Physical review letters.

[11]  Christoph H. Keitel,et al.  Atomic physics with super-high intensity lasers , 1997 .

[12]  I. Percival,et al.  A generalized correspondence principle and proton-hydrogen collisions , 1966 .

[13]  H. Friedrich,et al.  REFLECTION ABOVE POTENTIAL STEPS , 1997 .

[14]  U. W. Rathe,et al.  LETTER TO THE EDITOR: Intense laser - atom dynamics with the two-dimensional Dirac equation , 1997 .

[15]  Peter Sanders,et al.  A case study in scalability: An ADI method for the two-dimensional time-dependent Dirac equation , 1999, Parallel Comput..

[16]  H. Feshbach,et al.  Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles , 1958 .

[17]  G. Mourou,et al.  Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.

[18]  G. Mourou,et al.  Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. , 2008, Optics express.

[19]  Kurt Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Frontmatter , 2009 .

[20]  H T Powell,et al.  Petawatt laser pulses. , 1999, Optics letters.

[21]  C. Keitel Relativistic quantum optics , 2001 .

[22]  A. Rudenko,et al.  Few-photon multiple ionization of ne and ar by strong free-electron-laser pulses. , 2007, Physical review letters.

[23]  I. Percival Monte Carlo methods for classical collisions between electrons and atoms , 1973 .

[24]  S. Fritzler,et al.  Proton beams generated with high-intensity lasers: Applications to medical isotope production , 2003 .

[25]  T. Brabec,et al.  Relativistic theory of tunnel ionization , 2002 .

[26]  Christoph H. Keitel,et al.  Relativistic ionization rescattering with tailored laser pulses , 2006 .

[27]  S. Geltman Ionization of H(1s) by laser pulses: a close-coupling study , 2000 .

[28]  W. Sandner,et al.  Strong-field tunneling without ionization. , 2008, Physical review letters.

[29]  C. Joachain,et al.  Photon emission by ions interacting with short intense laser pulses , 2001 .

[30]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[31]  I. Percival,et al.  Microwave Ionization and Excitation of Rydberg Atoms , 1978 .

[32]  W. Sandner,et al.  Nontunnelling high-order harmonics from ultra-intense laser-driven tightly bound systems , 2002 .

[33]  J. Rost,et al.  Semiclassical description of multiphoton processes , 2000, physics/0002038.

[34]  Thomas Brabec,et al.  IONIZATION ABOVE THE COULOMB BARRIER , 1999 .

[35]  L. Stenflo,et al.  Proposal for detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides. , 2001, Physical review letters.

[36]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[37]  J. Ullrich,et al.  Progress at the Heidelberg EBIT , 2004 .

[38]  Guido R. Mocken,et al.  Quantum dynamics of relativistic electrons , 2004 .

[39]  J. Rost,et al.  Irregular orbits generate higher harmonics. , 1999, physics/9903036.

[40]  C. H. Keitel,et al.  Dynamics of multiply charged ions in intense laser fields , 2001 .

[41]  Knight,et al.  Monte Carlo classical simulations of ionization and harmonic generation in the relativistic domain. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  Stephan,et al.  First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength , 2000, Physical review letters.

[43]  H. Kull,et al.  Three-dimensional relativistic calculation of strong-field photoionization by the phase-space-averaging method , 1998 .

[44]  J. Cohen Comment on the classical-trajectory Monte Carlo method for ion-atom collisions , 1982 .

[45]  Heller,et al.  Semiclassical perturbation approach to quantum reflection. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[46]  K. H. Gundlach,et al.  Range of validity of the WKB tunnel probability, and comparison of experimental data and theory , 1969 .

[47]  E. Heller,et al.  Barrier Tunneling and Reflection in the Time and Energy Domains: The Battle of the Exponentials , 1997 .

[48]  Christoph H. Keitel,et al.  A real space split operator method for the Klein-Gordon equation , 2009, J. Comput. Phys..

[49]  Lewenstein,et al.  Stabilization of atoms in superintense laser fields: Is it real? , 1991, Physical review letters.

[50]  Guido R. Mocken,et al.  Quantum signatures in laser-driven relativistic multiple scattering. , 2003, Physical review letters.

[51]  A. Balakin,et al.  Representative Electrons and Energy Exchange in the Strong Laser Fields , 1998 .

[52]  C. Keitel,et al.  Nonperturbative vacuum-polarization effects in proton-laser collisions. , 2007, Physical review letters.

[53]  Gerard Mourou,et al.  Generation and characterization of the highest laser intensities (1022 W/cm2) , 2004, CLEO 2004.

[54]  G. Duchateau,et al.  A simple non-perturbative approach of atom ionisation by intense and ultra-short laser pulses , 2000 .

[55]  Clark,et al.  Photonuclear physics when a multiterawatt laser pulse interacts with solid targets , 2000, Physical review letters.

[56]  M. Richter,et al.  Photoelectric effect at ultrahigh intensities. , 2007, Physical review letters.

[57]  A. Verhoef,et al.  Laser technology: Source of coherent kiloelectronvolt X-rays , 2005, Nature.

[58]  C. Keitel,et al.  Relativistic classical Monte Carlo simulations of stabilization of hydrogenlike ions in intense laser pulses , 2002 .

[59]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[60]  J. Liu,et al.  Intensity determination of superintense laser pulses via ionization fraction in the relativistic tunnelling regime , 2010 .

[61]  Joachim Ullrich,et al.  Recoil-ion momentum spectroscopy , 1991 .

[62]  J. Tisch,et al.  Explosion of atomic clusters heated by high-intensity femtosecond laser pulses , 1998 .

[63]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[64]  I. Percival,et al.  Ionisation of highly excited atoms by electric fields. III. Microwave ionisation and excitation , 1979 .

[65]  V. Krainov,et al.  Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation field , 1998 .

[66]  Guido R. Mocken,et al.  FFT-split-operator code for solving the Dirac equation in 2+1 dimensions , 2008, Comput. Phys. Commun..

[67]  Peter J. Mohr,et al.  QED corrections in heavy atoms , 1998 .

[68]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[69]  S. X. Hu,et al.  Laser acceleration of electrons to giga-electron-volt energies using highly charged ions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Christoph H Keitel,et al.  Direct high-power laser acceleration of ions for medical applications. , 2008, Physical review letters.

[71]  Nuclear quantum optics with x-ray laser pulses. , 2006, Physical review letters.

[72]  I. Percival,et al.  Classical theory of charge transfer and ionization of hydrogen atoms by protons , 1966 .

[73]  J. Meyer-ter-Vehn,et al.  Neutron production by 200 mJ ultrashort laser pulses , 1998 .