The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future

The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.

[1]  R. Levy,et al.  Dust Aerosol Retrieval Over the Oceans with the MODIS/VIIRS Dark Target algorithm. Part II: Non-Spherical Dust Model , 2020 .

[2]  R. Levy,et al.  Dust Aerosol Retrieval Over the Oceans with the MODIS/VIIRS Dark Target algorithm. Part I: Dust Detection , 2020 .

[3]  J. Mülmenstädt,et al.  Bounding Global Aerosol Radiative Forcing of Climate Change , 2020, Reviews of geophysics.

[4]  T. Zhao,et al.  Variation of the aerosol optical properties and validation of MODIS AOD products over the eastern edge of the Tibetan Plateau based on ground-based remote sensing in 2017 , 2020, Atmospheric Environment.

[5]  Zhian Sun,et al.  Evaluation and improvement of MODIS aerosol optical depth products over China , 2020 .

[6]  Shana Mattoo,et al.  Continuing the MODIS Dark Target Aerosol Time Series with VIIRS , 2020, Remote. Sens..

[7]  M. Chin,et al.  Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017 , 2019, Atmospheric chemistry and physics.

[8]  Yoshinori Yamamoto Preface , 1994, Nihon Hoshasen Gijutsu Gakkai zasshi.

[9]  W. Shi,et al.  Evaluation and Comparison of Himawari-8 L2 V1.0, V2.1 and MODIS C6.1 aerosol products over Asia and the oceania regions , 2020 .

[10]  P. Gupta,et al.  Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign , 2019, Atmospheric Measurement Techniques.

[11]  B. Zhu,et al.  Evaluation and Comparison of MODIS Collection 6.1 and Collection 6 Dark Target Aerosol Optical Depth over Mainland China Under Various Conditions Including Spatiotemporal Distribution, Haze Effects, and Underlying Surface , 2019, Earth and Space Science.

[12]  J. Burrows,et al.  Understanding MODIS dark-target collection 5 and 6 aerosol data over China: Effect of surface type, aerosol loading and aerosol absorption , 2019, Atmospheric research.

[13]  E. Boss,et al.  The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances , 2019, Bulletin of the American Meteorological Society.

[14]  Zhiqiang Gao,et al.  Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area , 2019, Atmosphere.

[15]  Fan,et al.  Intercomparison of Multiple Satellite Aerosol Products against AERONET over the North China Plain , 2019, Atmosphere.

[16]  M. Chin,et al.  Estimates of African Dust Deposition Along the Trans‐Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI , 2019, Journal of geophysical research. Atmospheres : JGR.

[17]  Wei Li,et al.  Evaluation of the Aqua-MODIS C6 and C6.1 Aerosol Optical Depth Products in the Yellow River Basin, China , 2019, Atmosphere.

[18]  Xiangao Xia,et al.  Long-term validation of MODIS C6 and C6.1 Dark Target aerosol products over China using CARSNET and AERONET. , 2019, Chemosphere.

[19]  Jamie M. Bright,et al.  Climate-specific and global validation of MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations , 2019, Solar Energy.

[20]  N. C. Hsu,et al.  VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long‐Term Aerosol Data Records , 2019, Journal of Geophysical Research: Atmospheres.

[21]  M. Garay,et al.  Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign , 2019, Atmospheric Measurement Techniques.

[22]  Yiran Peng,et al.  MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison , 2019, Atmospheric Environment.

[23]  Muhammad Bilal,et al.  Evaluation of Terra-MODIS C6 and C6.1 Aerosol Products against Beijing, XiangHe, and Xinglong AERONET Sites in China during 2004-2014 , 2019, Remote. Sens..

[24]  A. Marshak,et al.  Exploring Aerosols Near Clouds With High‐Spatial‐Resolution Aircraft Remote Sensing During SEAC4RS , 2019, Journal of geophysical research. Atmospheres : JGR.

[25]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[26]  Yuan Wang,et al.  Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces , 2018, Atmospheric Environment.

[27]  Jeremy Werdell,et al.  The Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) Mission: Status, Science, Advances , 2018 .

[28]  David G. Schmale III,et al.  Science questions and knowledge gaps to study microbial transport and survival in Asian and African dust plumes reaching North America , 2018, Aerobiologia.

[29]  L. Remer,et al.  Screening for snow/snowmelt in SNPP VIIRS aerosol optical depth algorithm , 2018, Atmospheric Measurement Techniques.

[30]  D. Jaffe,et al.  US particulate matter air quality improves except in wildfire-prone areas , 2018, Proceedings of the National Academy of Sciences.

[31]  Yujie Wang,et al.  Exploring systematic offsets between aerosol products from the two MODIS sensors. , 2018, Atmospheric measurement techniques.

[32]  Robert C. Levy,et al.  Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation , 2018, Atmospheric Measurement Techniques.

[33]  Lorraine A. Remer,et al.  Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions , 2018, Atmospheric Measurement Techniques.

[34]  Jhoon Kim,et al.  AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, Validation and Merged Products , 2018, Remote. Sens..

[35]  Zhengqiang Li,et al.  GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia , 2018 .

[36]  Brent N. Holben,et al.  Retrieving near‐global aerosol loading over land and ocean from AVHRR , 2017 .

[37]  Bo-Cai Gao,et al.  Removal of Thin Cirrus Scattering Effects in Landsat 8 OLI Images Using the Cirrus Detecting Channel , 2017, Remote. Sens..

[38]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[39]  Woogyung V. Kim,et al.  An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks , 2017 .

[40]  Lorraine A. Remer,et al.  A surface reflectance scheme for retrieving aerosol optical depth over urbansurfaces in MODIS Dark Target retrieval algorithm , 2016 .

[41]  Brent N. Holben,et al.  Validation and expected error estimation of Suomi‐NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET , 2016 .

[42]  M. Claverie,et al.  Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. , 2016, Remote sensing of environment.

[43]  F. Joseph Turk,et al.  An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences , 2016 .

[44]  Muhammad Bilal,et al.  Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia , 2016, Remote. Sens..

[45]  M. Brauer,et al.  Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. , 2016, Environmental science & technology.

[46]  Thomas F. Eck,et al.  Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS) , 2016 .

[47]  Robert E. Holz,et al.  Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance , 2015 .

[48]  Thomas F. Eck,et al.  GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign , 2015 .

[49]  Qingyang Xiao,et al.  Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia , 2015 .

[50]  K. Moffett,et al.  Remote Sens , 2015 .

[51]  Didier Tanré,et al.  Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis , 2015 .

[52]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[53]  Yujie Wang,et al.  Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements , 2014 .

[54]  T. Eck,et al.  AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth , 2014 .

[55]  R. Martin,et al.  Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment , 2014, Environmental science & technology.

[56]  Mian Chin,et al.  A multi-model evaluation of aerosols over South Asia: common problems and possible causes , 2014 .

[57]  Michael Schulz,et al.  Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data , 2014 .

[58]  W. Lahoz,et al.  Data assimilation: making sense of Earth Observation , 2014, Front. Environ. Sci..

[59]  Lorraine A. Remer,et al.  Preliminary evaluation of S‐NPP VIIRS aerosol optical thickness , 2014 .

[60]  David G. Streets,et al.  Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model , 2014 .

[61]  Jinyuan Xin,et al.  The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011 , 2014 .

[62]  Lorraine A. Remer,et al.  Suomi‐NPP VIIRS aerosol algorithms and data products , 2013 .

[63]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[64]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[65]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[66]  Didier Tanré,et al.  Aerosol retrieval experiments in the ESA Aerosol_cci project , 2013 .

[67]  Lorraine A. Remer,et al.  MODIS 3 km aerosol product: algorithm and global perspective , 2013 .

[68]  B. Holben,et al.  MODIS 3 km aerosol product: applications over land in an urban/suburban region , 2013 .

[69]  Lorraine A. Remer,et al.  Satellite perspective of aerosol intercontinental transport: From qualitative tracking to quantitative characterization , 2013 .

[70]  M. Chin,et al.  Radiative forcing in the ACCMIP historical and future climate simulations , 2013 .

[71]  Shunlin Liang,et al.  NOAA NESDIS CENTER FOR SATELLITE APPLICATIONS AND RESEARCH Vegetation Index (VI) Product ALGORITHM THEORETICAL BASIS DOCUMENT , 2013 .

[72]  C. Lynnes,et al.  Giovanni: The Bridge between Data and Science , 2012 .

[73]  Amit Angal,et al.  MODIS reflective solar bands calibration improvements in Collection 6 , 2012, Asia-Pacific Environmental Remote Sensing.

[74]  Andrew S. Imada,et al.  Preface to the Special Section , 2012, Hum. Factors.

[75]  U. Lohmann,et al.  The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations , 2012 .

[76]  R. Marchand,et al.  Constraining cloud lifetime effects of aerosols using A‐Train satellite observations , 2012 .

[77]  Tianle Yuan,et al.  Aerosols from Overseas Rival Domestic Emissions over North America , 2012, Science.

[78]  Lorraine A. Remer,et al.  Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution , 2012 .

[79]  F. Bréon,et al.  Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations , 2012 .

[80]  Charles Ichoku,et al.  Multi-sensor Aerosol Products Sampling System (MAPSS) , 2012 .

[81]  Olivier Boucher,et al.  Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model , 2012 .

[82]  Didier Tanré,et al.  Evaluation and Wind Speed Dependence of MODIS Aerosol Retrievals Over Open Ocean , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[83]  C. Heald,et al.  North African dust export and deposition: A satellite and model perspective , 2012 .

[84]  Quanhua Liu,et al.  Three‐dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia , 2011 .

[85]  M. G. Manoj,et al.  Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells , 2011 .

[86]  Xiaoxiong Xiong,et al.  Validation of MODIS aerosol optical depth product over China using CARSNET measurements , 2011 .

[87]  Qiang Zhang,et al.  Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010 , 2011 .

[88]  J. Schwartz,et al.  A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations , 2011 .

[89]  Tianle Yuan,et al.  Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train , 2011 .

[90]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[91]  Mark Z. Jacobson,et al.  Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover , 2011 .

[92]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[93]  L. Remer,et al.  Observational evidence of aerosol enhancement of lightning activity and convective invigoration , 2011 .

[94]  C. Ichoku,et al.  Multi-Sensor Aerosol Products Sampling System , 2011 .

[95]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[96]  Becky Alexander,et al.  Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations , 2010 .

[97]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[98]  Ariel F. Stein,et al.  A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica , 2010 .

[99]  Brent N. Holben,et al.  An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation , 2010 .

[100]  D. G. Streets,et al.  Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000 , 2010 .

[101]  L. Remer,et al.  Aerosol-induced changes of convective cloud anvils produce strong climate warming , 2010 .

[102]  J. Ryu,et al.  Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager , 2010 .

[103]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[104]  Marcel Montrose,et al.  Introducing the Next Generation , 2010 .

[105]  Ying Zhang,et al.  Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method , 2010 .

[106]  Jie Guang,et al.  Correlation between PM concentrations and aerosol optical depth in eastern China , 2009 .

[107]  Takemasa Miyoshi,et al.  Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model , 2009 .

[108]  R. Levy,et al.  Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO , 2009 .

[109]  R. Hoff,et al.  The Relation between Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth and PM2.5 over the United States: A Geographical Comparison by U.S. Environmental Protection Agency Regions , 2009, Journal of the Air & Waste Management Association.

[110]  P. Gupta,et al.  Particulate Matter Air Quality Assessment using Integrated Surface, Satellite, and Meteorological Products , 2009 .

[111]  P. Gupta,et al.  Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach , 2009 .

[112]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[113]  M. Chin,et al.  Variability of marine aerosol fine‐mode fraction and estimates of anthropogenic aerosol component over cloud‐free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS) , 2009 .

[114]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[115]  Adina Paytan,et al.  Atmospheric iron deposition: global distribution, variability, and human perturbations. , 2009, Annual review of marine science.

[116]  A. Marshak,et al.  MODIS observations of enhanced clear sky reflectance near clouds , 2009 .

[117]  D. Fahey,et al.  Atmospheric Chemistry and Physics Modelled Radiative Forcing of the Direct Aerosol Effect with Multi-observation Evaluation , 2022 .

[118]  Gregory Leptoukh,et al.  Giovanni: A Web Service Workflow-Based Data Visualization and Analysis System , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[119]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[120]  H. S. Lim,et al.  Retrieving aerosol optical depth using visible and mid‐IR channels from geostationary satellite MTSAT‐1R , 2008 .

[121]  Lorraine A. Remer,et al.  Smoke Invigoration Versus Inhibition of Clouds over the Amazon , 2008, Science.

[122]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[123]  Lorraine A. Remer,et al.  A satellite‐based assessment of transpacific transport of pollution aerosol , 2008 .

[124]  Jeffrey S. Reid,et al.  A system for operational aerosol optical depth data assimilation over global oceans , 2008 .

[125]  Sundar A. Christopher,et al.  Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model , 2008 .

[126]  O. Boucher,et al.  Satellite-based estimate of the direct and indirect aerosol climate forcing , 2008 .

[127]  Tianle Yuan,et al.  Increase of cloud droplet size with aerosol optical depth: An observation and modeling study , 2008 .

[128]  G. Leeuw,et al.  Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands , 2008 .

[129]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[130]  P. S. Praveen,et al.  Atmospheric brown clouds: Hemispherical and regional variations in long‐range transport, absorption, and radiative forcing , 2007 .

[131]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[132]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[133]  Robert F. Cahalan,et al.  3‐D aerosol‐cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields , 2007 .

[134]  I. Lin,et al.  Aerosol input to the South China Sea: Results from the MODerate Resolution Imaging Spectro-radiometer, the Quick Scatterometer, and the Measurements of Pollution in the Troposphere Sensor , 2007 .

[135]  Naresh Kumar,et al.  An empirical relationship between PM(2.5) and aerosol optical depth in Delhi Metropolitan. , 2007, Atmospheric environment.

[136]  D. Chu,et al.  Multi‐grid‐cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004 , 2007 .

[137]  Yoram J. Kaufman,et al.  On the twilight zone between clouds and aerosols , 2007 .

[138]  R. Charlson,et al.  On the climate forcing consequences of the albedo continuum between cloudy and clear air , 2007 .

[139]  R. Pinker,et al.  Remote Sensing of Spectral Aerosol Properties: A Classroom Experience , 2007 .

[140]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[141]  Jassim A. Al-Saadi,et al.  Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization , 2006 .

[142]  R. Martin,et al.  Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing , 2006 .

[143]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[144]  Lorraine Remer,et al.  Comparison of Three Years of Terra and Aqua MODIS Aerosol Optical Thickness Over the Global Oceans , 2006, IEEE Geoscience and Remote Sensing Letters.

[145]  A. Stohl,et al.  Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006 , 2006 .

[146]  Yoram J. Kaufman,et al.  Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models , 2006 .

[147]  Yoram J. Kaufman,et al.  Satellite‐based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle , 2006 .

[148]  R. Koelemeijer,et al.  Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe , 2006 .

[149]  Jun Wang,et al.  Satellite remote sensing of particulate matter and air quality assessment over global cities , 2006 .

[150]  D. Jacob,et al.  Transpacific Transport of Asian Anthropogenic Aerosols and its Impact on Surface Air Quality in the United States , 2006 .

[151]  M. Dubey,et al.  Aerosol indirect effect over the Indian Ocean , 2006 .

[152]  Yoram J. Kaufman,et al.  Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data , 2006 .

[153]  T. Takemura,et al.  Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea , 2006 .

[154]  V. Ramanathan,et al.  Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations , 2005 .

[155]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[156]  E. Roeckner,et al.  The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100 , 2005 .

[157]  T. Eck,et al.  Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean , 2005 .

[158]  Lorraine Remer,et al.  A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[159]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[160]  M. Chin,et al.  Aerosol anthropogenic component estimated from satellite data , 2005 .

[161]  D. Chu,et al.  Improving National Air Quality Forecasts with Satellite Aerosol Observations , 2005 .

[162]  O. Boucher,et al.  Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data , 2005 .

[163]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[164]  Ilan Koren,et al.  The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[165]  J. Haywood,et al.  The direct radiative effect of biomass burning aerosols over southern Africa , 2005 .

[166]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[167]  W. Paul Menzel,et al.  INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .

[168]  Y. Kaufman,et al.  Aerosol invigoration and restructuring of Atlantic convective clouds , 2005 .

[169]  Lorraine Remer,et al.  Snow and ice mask for the MODIS aerosol products , 2005, IEEE Geoscience and Remote Sensing Letters.

[170]  Ramesh P. Singh,et al.  Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India , 2005 .

[171]  Yoram J. Kaufman,et al.  Dust transport and deposition observed from the Terra‐Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean , 2005 .

[172]  Lorraine A. Remer,et al.  Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua , 2005 .

[173]  Maurice Herman,et al.  Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model , 2005 .

[174]  Michael Schulz,et al.  Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Météorologie Dynamique general circulation model , 2005 .

[175]  Yoram J. Kaufman,et al.  Shortwave aerosol radiative forcing over cloud‐free oceans from Terra: 2. Seasonal and global distributions , 2005 .

[176]  V. Ramanathan,et al.  Preface to special section on Global Aerosol System , 2005 .

[177]  M. V. Ramana,et al.  Persistent, Widespread, and Strongly Absorbing Haze Over the Himalayan Foothills and the Indo-Gangetic Plains , 2005 .

[178]  Yoram J. Kaufman,et al.  Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia , 2005 .

[179]  William L. Smith,et al.  Suborbital Measurements of Spectral Aerosol Optical Depth and Its Variability at Subsatellite Grid Scales in Support of CLAMS 2001 , 2005 .

[180]  Yoram J. Kaufman,et al.  Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS , 2005 .

[181]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[182]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[183]  Veerabhadran Ramanathan,et al.  Saharan Dust Aerosol Radiative Forcing Measured from Space , 2004 .

[184]  Basil W. Coutant,et al.  Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality , 2004 .

[185]  J. Lamarque,et al.  Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability , 2004 .

[186]  Ilan Koren,et al.  Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation , 2004, Science.

[187]  Yoram J. Kaufman,et al.  Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations , 2004 .

[188]  Alexander Ignatov,et al.  Operational Aerosol Observations (AEROBS) from AVHRR/3 On Board NOAA-KLM Satellites , 2004 .

[189]  Hong-bin Chen,et al.  Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in East Asia. , 2004, Journal of environmental sciences.

[190]  Sundar A. Christopher,et al.  Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra , 2003 .

[191]  B. Holben,et al.  Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) , 2003 .

[192]  Jun Wang,et al.  Intercomparison between satellite‐derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies , 2003 .

[193]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[194]  J. Reid,et al.  Foreword to special section on the Puerto Rico Dust Experiment (PRIDE) , 2003 .

[195]  Yoram J. Kaufman,et al.  Evaluation of the Moderate‐Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE , 2003 .

[196]  Jun Wang,et al.  Airborne Sun photometer measurements of aerosol optical depth and columnar water vapor during the Puerto Rico Dust Experiment and comparison with land, aircraft, and satellite measurements , 2003 .

[197]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[198]  D. Diner,et al.  Coordinated airborne, spaceborne, and ground‐based measurements of massive thick aerosol layers during the dry season in southern Africa , 2003 .

[199]  B. Holben,et al.  MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000 , 2003 .

[200]  Yoram J. Kaufman,et al.  Remote sensing of suspended sediments and shallow coastal waters , 2003, IEEE Trans. Geosci. Remote. Sens..

[201]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[202]  William L. Barnes,et al.  MODIS on-orbit calibration and characterization , 2003 .

[203]  S. Gassó,et al.  On the retrieval of columnar aerosol mass and CCN concentration by MODIS , 2003 .

[204]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR‐2 radiometer measurements 2. Case study application and validation , 2002 .

[205]  Yoram J. Kaufman,et al.  Relationship between surface reflectance in the visible and mid‐IR used in MODIS aerosol algorithm ‐ theory , 2002 .

[206]  Thomas Holzer-Popp,et al.  Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description , 2002 .

[207]  C. Justice,et al.  Atmospheric correction of MODIS data in the visible to middle infrared: first results , 2002 .

[208]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[209]  Sundar A. Christopher,et al.  Shortwave Aerosol Radiative Forcing from MODIS and CERES observations over the oceans , 2002 .

[210]  Yoram J. Kaufman,et al.  Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38‐μm and 1.24‐μm channels , 2002 .

[211]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[212]  B. Holben,et al.  Validation of MODIS aerosol retrieval over ocean , 2002 .

[213]  Yoram J. Kaufman,et al.  MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability , 2002 .

[214]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[215]  Brian Cairns,et al.  Global Two-Channel AVHRR Retrievals of Aerosol Properties over the Ocean for the Period of NOAA-9 Observations and Preliminary Retrievals Using NOAA-7 and NOAA-11 Data , 2002 .

[216]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[217]  Yoram J. Kaufman,et al.  Evaluation of the MODIS Retrievals of Dust Aerosol over the Ocean during PRIDE , 2002 .

[218]  Yoram J. Kaufman,et al.  Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum , 2001 .

[219]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[220]  J. Lawton,et al.  Earth System Science , 2001, Science.

[221]  Lorraine Remer,et al.  Angular and seasonal variation of spectral surface reflectance ratios: implications for the remote sensing of aerosol over land , 2001, IEEE Trans. Geosci. Remote. Sens..

[222]  P. Falkowski,et al.  Seasonal distributions of aeolian iron fluxes to the global ocean , 2001 .

[223]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[224]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[225]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[226]  J. Veefkind,et al.  Aerosol optical depth over Europe in August 1997 derived from ATSR‐2 data , 2000 .

[227]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[228]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[229]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[230]  Teruyuki Nakajima,et al.  Development of a Two-Channel Aerosol Retrieval Algorithm on a Global Scale Using NOAA AVHRR , 1999 .

[231]  D. Tanré,et al.  Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX , 1999 .

[232]  P. Hobbs An overview of the University of Washington airborne measurements and results from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) , 1999 .

[233]  S. Kinne,et al.  Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer , 1999 .

[234]  Philip B. Russell,et al.  Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) , 1999 .

[235]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance measurements , 1999 .

[236]  B. Holben,et al.  Remote sensing of smoke from MODIS airborne simulator during the SCAR‐B experiment , 1998 .

[237]  Yoram J. Kaufman,et al.  Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR‐B , 1998 .

[238]  Yoram J. Kaufman,et al.  Biomass burning aerosol size distribution and modeled optical properties , 1998 .

[239]  S. Gassó,et al.  Comparison of Columnar Aerosol Optical Properties Measured by the MODIS Airborne Simulator with In Situ Measurements , 1998 .

[240]  T. Nakajima,et al.  A use of two‐channel radiances for an aerosol characterization from space , 1998 .

[241]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[242]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[243]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[244]  Y. Kaufman,et al.  Dynamic aerosol model: Urban/industrial aerosol , 1998 .

[245]  Alexander Ignatov,et al.  Sensitivity study of the Ångström exponent derived from AVHRR over the oceans , 1998 .

[246]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[247]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[248]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[249]  B. Holben,et al.  Urban/industrial aerosol: Ground‐based Sun/sky radiometer and airborne in situ measurements , 1997 .

[250]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[251]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[252]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[253]  C. Justice,et al.  Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation , 1997 .

[254]  Yoram J. Kaufman,et al.  Information on aerosol size distribution contained in solar reflected spectral radiances , 1996 .

[255]  W. Paul Menzel,et al.  Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties , 1996 .

[256]  Y. Kaufman,et al.  Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space , 1995 .

[257]  E. Ben-Dor A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band , 1994 .

[258]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[259]  Yoram J. Kaufman,et al.  Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements , 1994 .

[260]  Lorraine Remer,et al.  Detection of forests using mid-IR reflectance: an application for aerosol studies , 1994, IEEE Trans. Geosci. Remote. Sens..

[261]  S. G. Tilford,et al.  Mission to planet earth , 1994 .

[262]  A. Goetz,et al.  Cirrus cloud detection from airborne imaging spectrometer data using the 1 , 1993 .

[263]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[264]  S. Williams,et al.  The GLObal Backscatter Experiment (GLOBE) Pacific Survey Mission , 1991, Coherent Laser Radar: Technology and Applications.

[265]  P. Durkee,et al.  Global analysis of aerosol particle characteristics , 1991 .

[266]  Larry L. Stowe,et al.  Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications , 1989 .

[267]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[268]  Tak Matsumoto,et al.  Airborne Tracking Sunphotometer , 1987 .

[269]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[270]  H. Quenzel,et al.  Relative atmospheric aerosol content from erts observations , 1977 .

[271]  R. S. Fraser Satellite measurement of mass of Sahara dust in the atmosphere. , 1976, Applied optics.

[272]  M. Griggs,et al.  Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. , 1975, Journal of the Air Pollution Control Association.

[273]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .