Kapitza resistance at segregated boundaries in β-SiC

The impact of grain-boundary segregation on the high-temperature Kapitza resistance of doped β-SiC using non-equilibrium molecular dynamics simulation is investigated. In particular, low-angle, symmetric tilt grain boundaries are examined to assess the roles of dopant concentration and dopant/matrix interaction strength in determining the resistance. For relatively weak interaction strengths, dopant clustering predominates, and the Kapitza resistance increases significantly for small changes in dopant concentration. As the dopant/matrix interaction strength is increased, dopant layering is observed with a concomitant gradual increase in resistance with concentration. The different interaction strength regimes are investigated by mapping the spatial distribution of boundary temperatures and by quantifying the degree of spatial ordering at a boundary. It was found that dopant clustering leads to a heat flux parallel to the grain-boundary plane and to significant boundary disorder, partly explaining the observed increase in Kapitza resistance at the boundary.

[1]  Martin P. Harmer,et al.  The Phase Behavior of Interfaces , 2011, Science.

[2]  Ganesh Balakrishnan,et al.  Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces , 2011 .

[3]  W. Craig Carter,et al.  Complexion: A new concept for kinetic engineering in materials science , 2007 .

[4]  M. Dresselhaus,et al.  Thermal conductivity spectroscopy technique to measure phonon mean free paths. , 2011, Physical review letters.

[5]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[6]  R. Selvam,et al.  Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants , 2006 .

[7]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[8]  A. Minnich,et al.  Advances in the measurement and computation of thermal phonon transport properties , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[10]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[11]  Fei Gao,et al.  Molecular Dynamics Modeling of the Thermal Conductivity of Irradiated SiC as a Function of Cascade Overlap , 2007 .

[12]  Robert A. Taylor,et al.  Recent advances in thermoelectric materials and solar thermoelectric generators – a critical review , 2014 .

[13]  Stephen D. Heister,et al.  Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis , 2013, Journal of Electronic Materials.

[14]  S. Yip,et al.  Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects , 1998 .

[15]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[16]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[17]  T. Beechem,et al.  Bidirectionally tuning Kapitza conductance through the inclusion of substitutional impurities , 2012 .

[18]  David L. Olmsted,et al.  Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy , 2009 .

[19]  L. Gélébart,et al.  Multiscale modeling of the thermal conductivity of polycrystalline silicon carbide , 2009 .

[20]  Brian F. Donovan,et al.  Thermal boundary conductance accumulation and interfacial phonon transmission: Measurements and theory , 2015 .

[21]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[22]  A. G. Thompson,et al.  Thermoreflectance in Semiconductors , 1968 .

[23]  Lisa J. Porter,et al.  Atomistic modeling of finite-temperature properties of β-SiC. I. Lattice vibrations, heat capacity, and thermal expansion , 1997 .

[24]  M. P. Walsh,et al.  Nanostructured thermoelectric materials , 2005 .

[25]  David G. Cahill,et al.  Frequency dependence of the thermal conductivity of semiconductor alloys , 2007 .

[26]  J. Yang,et al.  Potential applications of thermoelectric waste heat recovery in the automotive industry , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[27]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[28]  Patrick E. Hopkins,et al.  Implications of cross-species interactions on the temperature dependence of Kapitza conductance , 2011 .

[29]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[30]  M. Harmer,et al.  Grain Boundary Complexions , 2014 .

[31]  R. Jones,et al.  Relationship of thermal boundary conductance to structure from an analytical model plus molecular dynamics simulations , 2013 .

[32]  J. Ho,et al.  Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films , 2003 .

[33]  G. Madsen,et al.  Atomistic study of the influence of lattice defects on the thermal conductivity of silicon , 2014 .

[34]  C. Dames,et al.  Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures , 2013 .

[35]  M. Harmer,et al.  Grain-boundary layering transitions in a model bicrystal , 2013 .

[36]  R. Jones,et al.  Investigation of size and electronic effects on Kapitza conductance with non-equilibrium molecular dynamics , 2013 .

[37]  L. Zhigilei,et al.  Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations , 2007 .

[38]  Patrick E. Hopkins,et al.  Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance , 2013 .

[39]  J. Shiomi,et al.  Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices , 2008 .

[40]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[41]  S. Volz,et al.  Thermal transport along the dislocation line in silicon carbide. , 2014, Physical review letters.

[42]  K. Termentzidis,et al.  Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics , 2012, 1209.3485.

[43]  N. Papanikolaou Lattice thermal conductivity of SiC nanowires , 2008 .

[44]  R. Selvam,et al.  Stabilizing nanocrystalline materials with dopants , 2007 .

[45]  R. Jones,et al.  Molecular dynamics studies of material property effects on thermal boundary conductance. , 2013, Physical chemistry chemical physics : PCCP.

[46]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[47]  Alan J. H. McGaughey,et al.  Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations , 2009 .

[48]  R. Jones,et al.  Influence of crystallographic orientation and anisotropy on Kapitza conductance via classical molecular dynamics simulations , 2012 .

[49]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[50]  Leonid V. Zhigilei,et al.  Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces , 2012 .

[51]  R. Ruoff,et al.  Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. , 2011, Nano letters.