New transience bounds for max-plus linear systems

Linear max-plus systems describe the behavior of a large variety of complex systems. It is known that these systems show a periodic behavior after an initial transient phase. Assessment of the length of this transient phase provides important information on complexity measures of such systems, and so is crucial in system design. We identify relevant parameters in a graph representation of these systems and propose a modular strategy to derive new upper bounds on the length of the transient phase. By that we are the first to give asymptotically tight and potentially subquadratic transience bounds. We use our bounds to derive new complexity results, in particular in distributed computing.

[1]  G. S. Y. Koelemeijer,et al.  ON THE BEHAVIOUR OF CLASSES OF MIN-MAX-PLUS SYSTEMS , 2003 .

[2]  Dimitri P. Bertsekas,et al.  Asymptotic optimality of shortest path routing algorithms , 1987, IEEE Trans. Inf. Theory.

[3]  Sergio Rajsbaum,et al.  Analysis of Distributed Algorithms based on Recurrence Relations (Preliminary Version) , 1991, WDAG.

[4]  A. Brauer On a Problem of Partitions , 1942 .

[5]  Hans Schneider,et al.  Max-Balancing Weighted Directed Graphs and Matrix Scaling , 1991, Math. Oper. Res..

[6]  Jennifer L. Welch,et al.  Link Reversal Routing with Binary Link Labels: Work Complexity , 2013, SIAM J. Comput..

[7]  Ki Hang Kim An extension of the Dulmage-Mendelsohn theorem☆ , 1979 .

[8]  Kathryn E. Stecke,et al.  Dynamic analysis of repetitive decision-free discreteevent processes: The algebra of timed marked graphs and algorithmic issues , 1990 .

[9]  Štefan Schwarz On a sharp estimation in the theory of binary relations on a finite set , 1970 .

[10]  J. Quadrat,et al.  Analyse du comportement periodique de systemes de production par la theorie des dioides , 1983 .

[11]  Geert Jan Olsder,et al.  Max Plus at Work-Modelling and Analysis of Synchronized Systems , 2006 .

[12]  Maurice Herlihy,et al.  Self-stabilizing distributed queuing , 2001, IEEE Transactions on Parallel and Distributed Systems.

[13]  N. S. Mendelsohn,et al.  Gaps in the exponent set of primitive matrices , 1964 .

[14]  Eli Gafni,et al.  Concurrency in heavily loaded neighborhood-constrained systems , 1989, ICDCS.

[15]  J. Quadrat,et al.  Algebraic tools for the performance evaluation of discrete event systems , 1989, Proc. IEEE.

[16]  Eric V. Denardo,et al.  Periods of Connected Networks and Powers of Nonnegative Matrices , 1977, Math. Oper. Res..

[17]  Baruch Awerbuch,et al.  Complexity of network synchronization , 1985, JACM.

[18]  Matthias Függer,et al.  Time Complexity of Link Reversal Routing , 2015, ACM Trans. Algorithms.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  Mark Hartmann,et al.  Transience Bounds for Long Walks , 1999, Math. Oper. Res..

[21]  G. Olsder,et al.  THE MAX-PLUS ALGEBRA APPROACH TO TRANSPORTATION PROBLEMS , 1999 .

[22]  Jennifer L. Welch,et al.  Link Reversal Algorithms , 2011, Synthesis Lectures on Distributed Computing Theory.

[23]  Bruno Gaujal,et al.  Coupling Time of a (Max, Plus) Matrix , 2001 .

[24]  Srikanta Tirthapura,et al.  Analysis of Link Reversal Routing Algorithms , 2005, SIAM J. Comput..

[25]  K. Mani Chandy,et al.  The drinking philosophers problem , 1984, ACM Trans. Program. Lang. Syst..

[26]  Didier Dubois,et al.  A linear-system-theoretic view of discrete-event processes , 1983 .

[27]  Qiao Li,et al.  The index set problem for Boolean (or nonnegative) matrices , 1993, Discret. Math..

[28]  H. Wielandt Unzerlegbare, nicht negative Matrizen , 1950 .

[29]  Hagit Attiya,et al.  A Provably Starvation-Free Distributed Directory Protocol , 2010, SSS.