The Dual Phase Evolution Framework for Understanding Evolutionary Dynamics in Complex Adaptive Systems

Evidence from several fields suggests that dual phase evolution (DPE) may account for distinctive features associated with complex adaptive systems. Here, we review empirical and theoretical evidence for DPE in natural systems and examine the relationship of DPE to self-organized criticality and adaptive cycles. A general model for DPE in networks is outlined, with preliminary data illustrating the emergence of phase changes. 1

[1]  C. S. Holling,et al.  Panarchy Understanding Transformations in Human and Natural Systems , 2002 .

[2]  B. Calcott Fitness Landscapes and the Origin of Species , 2005 .

[3]  Tania G. Leishman,et al.  A Dual Phase Evolution Model of Adaptive Radiation in Landscapes , 2007, ACAL.

[4]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[5]  Tania G. Leishman,et al.  Dual Phase Evolution and Self-organisation in Networks , 2008, SEAL.

[6]  Michael Kirley,et al.  A Cellular Genetic Algorithm with Disturbances: Optimisation Using Dynamic Spatial Interactions , 2002, J. Heuristics.

[7]  M. Newman,et al.  A model of mass extinction. , 1997, Journal of theoretical biology.

[8]  N. Swenson,et al.  Clustering of Contact Zones, Hybrid Zones, and Phylogeographic Breaks in North America , 2005, The American Naturalist.

[9]  Maosong Sun,et al.  Transductive Support Vector Machines Using Simulated Annealing , 2005, CIS.

[10]  N. Packard,et al.  Connectivity and Catastrophe — Towards a General Theory of Evolution , 2000 .

[11]  G. Hewitt Genetic consequences of climatic oscillations in the Quaternary. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  P. Bak,et al.  Self-Organization of Complex Systems , 1999, cond-mat/9906077.

[13]  Christopher G. Langton,et al.  Life at the Edge of Chaos , 1992 .

[14]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[15]  O. Kinouchi,et al.  Robustness of scale invariance in models with self-organized criticality. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[17]  B. Werner,et al.  Self-Organization of Sorted Patterned Ground , 2003, Science.

[18]  John H. Holland,et al.  Hidden Order: How Adaptation Builds Complexity , 1995 .

[19]  D. Green,et al.  Connectivity and Catastrophe-Towards a General Theory of Evolution , 2019 .

[20]  de Carvalho JX,et al.  Self-organized criticality in the olami-feder-christensen model , 1999, Physical review letters.

[21]  A. Watson,et al.  Biological homeostasis of the global environment: the parable of Daisyworld , 1983 .

[22]  Didier Sornette,et al.  Mapping Self-Organized Criticality onto Criticality , 1994, adap-org/9411002.

[23]  N. Eldredge,et al.  Punctuated equilibrium comes of age , 1993, Nature.

[24]  S. Weber On Homeostasis in Daisyworld , 2001 .

[25]  Louise K. Comfort,et al.  Self-Organization in Complex Systems , 1994 .

[26]  David G. Green,et al.  Dual phase evolution — a mechanism for self-organization in complex systems , 2006 .

[27]  T. Lenton,et al.  Gaia as a complex adaptive system. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  J. Avise,et al.  Pleistocene phylogeographic effects on avian populations and the speciation process , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  K. Bennett,et al.  The evolutionary legacy of the Ice Ages - Papers of a discussion meeting held at the Royal Society on 21 and 22 May 2003 - Introduction , 2004 .

[30]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[31]  D. G. Green,et al.  Fire and stability in the postglacial forests of southwest Nova Scotia , 1982 .

[32]  Xiaodong Li,et al.  Investigation of a Cellular Genetic Algorithm that Mimics Landscape Ecology , 1998, SEAL.

[33]  John R. Koza,et al.  Hidden Order: How Adaptation Builds Complexity. , 1995, Artificial Life.

[34]  Oscar Cordón,et al.  A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems , 2002, Soft Comput..

[35]  Tang,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[36]  L. Darrell Whitley,et al.  Cellular Genetic Algorithms , 1993, ICGA.

[37]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[38]  Zne-Jung Lee,et al.  Parameter determination of support vector machine and feature selection using simulated annealing approach , 2008, Appl. Soft Comput..

[39]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[40]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[41]  H. Gleason Further Views on the Succession‐Concept , 1927 .

[42]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[43]  S. Gould The Structure of Evolutionary Theory , 2002 .

[44]  D. G. Green,et al.  Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia , 2001, Landscape Ecology.

[45]  Xi-Huai Wang,et al.  Hybrid particle swarm optimization with simulated annealing , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[46]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .