Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity.

[1]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[2]  M. P. Farrell,et al.  Acute and Chronic Toxicity of Copper to Four Species of Daphnia , 1976 .

[3]  C. Hickey Sensitivity of four New Zealand cladoceran species and Daphnia magna to aquatic toxicants , 1989 .

[4]  D. DeForest,et al.  Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups , 2001, Environmental toxicology and chemistry.

[5]  J. Hermens,et al.  Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants. , 1997, Chemosphere.

[6]  Colin R. Janssen,et al.  Multigeneration zinc acclimation and tolerance in Daphnia magna: Implications for water‐quality guidelines and ecological risk assessment , 2001, Environmental toxicology and chemistry.

[7]  Colin R. Janssen,et al.  Tolerance and acclimation to zinc of field-collected Daphnia magna populations. , 2002, Aquatic toxicology.

[8]  Matthias Liess,et al.  Relative sensitivity distribution of aquatic invertebrates to organic and metal compounds , 2004, Environmental toxicology and chemistry.

[9]  G. Chapman Do organisms in laboratory toxicity tests respond like organisms in nature , 1983 .

[10]  J. Hermens,et al.  Pattern analysis of the variation in the sensitivity of aquatic species to toxicants. , 1997, Chemosphere.

[11]  M. Présing On the effects of Dikonirt (sodium salt of 2.4-Dichlorophenoxi-acetic acid) on the mortality and reproduction of Daphnia magna , 1981, Hydrobiologia.

[12]  G. Fryer,et al.  The effects of pH and salt content on sodium balance inDaphina magna andAcantholeberis curvirostris (Crustacea: Cladocera) , 1979, Journal of comparative physiology.

[13]  A. Bianchini,et al.  Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. , 2002, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[14]  M. A. Hamilton,et al.  Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays , 1977 .

[15]  M. Depledge,et al.  Testing vs research in ecotoxicology: a response to Baird and Calow , 1993 .

[16]  Colin R. Janssen,et al.  Tolerance and acclimation to zinc of Ceriodaphnia dubia. , 2002, Environmental pollution.

[17]  B. Parkhurst,et al.  Reproducibility of a life-cycle toxicity test withDaphnia magna , 1981, Bulletin of environmental contamination and toxicology.

[18]  Colin R. Janssen,et al.  A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. , 2002, Environmental science & technology.

[19]  D. Baird,et al.  A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna straus. , 1991, Ecotoxicology and environmental safety.

[20]  Luc De Meester,et al.  Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas , 2001 .

[21]  A. Welter,et al.  Relative sensitivity of three daphnid species to selected organic and inorganic chemicals , 1986 .

[22]  H. Canton,et al.  CONSECUTIVE SYSTEM OF TESTS FOR ASSESSMENT OF THE EFFECTS OF CHEMICAL AGENTS IN THE AQUATIC ENVIRONMENT , 1983 .

[23]  D. I. Mount,et al.  A seven‐day life cycle cladoceran toxicity test , 1984 .

[24]  J. Canton,et al.  Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparison of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments , 1978, Hydrobiologia.

[25]  S. Dyer,et al.  Ceriodaphnia and daphnia: A comparison of their sensitivity to xenobiotics and utility as a test species , 1997 .

[26]  E. Tipping Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances , 1998 .

[27]  S. Turley,et al.  Derivation of acute ecological risk criteria for chlorite in freshwater ecosystems. , 2003, Water research.

[28]  S. Koivisto Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? , 1995, Environmental pollution.

[29]  A. Münzinger,et al.  A comparison of the sensitivity of three Daphnia magna populations under chronic heavy metal stress. , 1991, Ecotoxicology and environmental safety.

[30]  M. Walls,et al.  Comparison of five cladoceran species in short- and long-term copper exposure , 1992, Hydrobiologia.

[31]  Colin R. Janssen,et al.  Influence of multigeneration acclimation to copper on tolerance, energy reserves, and homeostasis of Daphnia magna Straus , 2004, Environmental toxicology and chemistry.

[32]  S. Hatakeyama,et al.  A freshwater shrimp (Paratya compressa improvisa) as a sensitive test organism to pesticides. , 1989, Environmental pollution.

[33]  Colin R. Janssen,et al.  Acclimation of Daphnia magna to environmentally realistic copper concentrations. , 2003, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.