Observer-Based H8 Control of Fuzzy Systems with Quantized Feedback

This paper is concerned with the problem of observer-based H∞ control of fuzzy systems with quantized feedback. New results on the H∞ feedback control of fuzzy nonlinear systems are obtained by choosing appropriately quantized strategies.

[1]  Kazuo Tanaka,et al.  Stability analysis and design of fuzzy control systems , 1992 .

[2]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[3]  Andreas Zeller,et al.  Mining temporal specifications from object usage , 2011, Automated Software Engineering.

[4]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[5]  Andreas Zeller,et al.  Detecting object usage anomalies , 2007, ESEC-FSE '07.

[6]  Daniel Liberzon Observer-based quantized output feedback control of nonlinear systems , 2008 .

[7]  R. M. Tong,et al.  A control engineering review of fuzzy systems , 1977, Autom..

[8]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[9]  Bruce A. Francis,et al.  Quadratic stabilization of sampled-data systems with quantization , 2003, Autom..

[10]  James R. Larus,et al.  Mining specifications , 2002, POPL '02.

[11]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[12]  Xi Li,et al.  Delay-dependent robust H control of uncertain linear state-delayed systems , 1999, Autom..

[13]  Andreas Zeller,et al.  Generating test cases for specification mining , 2010, ISSTA '10.

[14]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Claudio De Persis,et al.  Discontinuous stabilization of nonlinear systems: Quantized and switching controls , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[16]  Qiang Ling,et al.  Stability of quantized control systems under dynamic bit assignment , 2005, IEEE Transactions on Automatic Control.

[17]  Euntai Kim,et al.  New approaches to relaxed quadratic stability condition of fuzzy control systems , 2000, IEEE Trans. Fuzzy Syst..

[18]  William G. Griswold,et al.  Dynamically discovering likely program invariants to support program evolution , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).

[19]  Matthew B. Dwyer,et al.  Bandera: extracting finite-state models from Java source code , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[20]  Jonathan Jacky,et al.  The Way of Z: Practical Programming with Formal Methods , 1996 .

[21]  Andreas Zeller,et al.  Learning from 6,000 projects: lightweight cross-project anomaly detection , 2010, ISSTA '10.

[22]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[23]  Dragan Nesic,et al.  Input-to-State Stabilization of Linear Systems With Quantized State Measurements , 2007, IEEE Transactions on Automatic Control.

[24]  Michael A. Cusumano,et al.  How Microsoft builds software , 1997, CACM.

[25]  N. Elia,et al.  Quantized feedback stabilization of non-linear affine systems , 2004 .