Variational integrator for the rotating shallow‐water equations on the sphere

We develop a variational integrator for the shallow-water equations on a rotating sphere. The variational integrator is built around a discretization of the continuous Euler-Poincare reduction framework for Eulerian hydrodynamics. We describe the discretization of the continuous Euler-Poincare equations on arbitrary simplicial meshes. Standard numerical tests are carried out to verify the accuracy and the excellent conservational properties of the discrete variational integrator.

[1]  R. Heikes,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .

[2]  W. Bauer,et al.  Variational integrators for anelastic and pseudo-incompressible flows , 2017, Journal of Geometric Mechanics.

[3]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[4]  J. Marsden,et al.  Structure-preserving discretization of incompressible fluids , 2009, 0912.3989.

[5]  Jean-Christophe Nave,et al.  Conservative Methods for Dynamical Systems , 2016, SIAM J. Numer. Anal..

[6]  Chris Budd,et al.  Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .

[7]  Jason Frank,et al.  A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations , 2003 .

[8]  Martin J. Gander,et al.  B-Methods for the Numerical Solution of Evolution Problems with Blow-Up Solutions Part I: Variation of the Constant , 2015, SIAM J. Sci. Comput..

[9]  Jean-Christophe Nave,et al.  On the Arbitrarily Long-Term Stability of Conservative Methods , 2016, SIAM J. Numer. Anal..

[10]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[11]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[12]  Bram van Leer,et al.  High-order finite-volume methods for the shallow-water equations on the sphere , 2010, J. Comput. Phys..

[13]  Fernando Casas,et al.  A Concise Introduction to Geometric Numerical Integration , 2016 .

[14]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[15]  D. Randall,et al.  A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid , 2002 .

[16]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[17]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[18]  Colin J. Cotter,et al.  A Framework for Mimetic Discretization of the Rotating Shallow-Water Equations on Arbitrary Polygonal Grids , 2012, SIAM J. Sci. Comput..

[19]  Mathieu Desbrun,et al.  Variational discretization for rotating stratified fluids , 2013 .

[20]  Werner Bauer,et al.  Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations , 2017, 1711.10617.

[21]  Evan S. Gawlik,et al.  Geometric, variational discretization of continuum theories , 2010, 1010.4851.

[22]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[24]  Colin J. Cotter,et al.  A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes , 2015, J. Comput. Phys..

[25]  David A. Randall,et al.  Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid. Part II. A Detailed Description of the Grid and an Analysis of Numerical Accuracy , 1995 .

[26]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[27]  Jörn Behrens,et al.  Toward goal-oriented R-adaptive models in geophysical fluid dynamics using a generalized discretization approach , 2013 .

[28]  William C. Skamarock,et al.  Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..

[29]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[30]  Alexander Bihlo,et al.  Symmetry-Preserving Numerical Schemes , 2016, 1608.02557.

[31]  Andrew T. T. McRae,et al.  Energy‐ and enstrophy‐conserving schemes for the shallow‐water equations, based on mimetic finite elements , 2013, 1305.4477.

[32]  Roman O. Popovych,et al.  Invariant Discretization Schemes for the Shallow-Water Equations , 2012, SIAM J. Sci. Comput..

[33]  Christopher Eldred,et al.  Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods – Part 1: Derivation and properties , 2016 .

[34]  Jerrold E. Marsden,et al.  The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.

[35]  A. Mondino ON RIEMANNIAN MANIFOLDS , 1999 .

[36]  Jerrold E. Marsden,et al.  Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties , 2008, Found. Comput. Math..