Variational integrator for the rotating shallow‐water equations on the sphere
暂无分享,去创建一个
Werner Bauer | Alexander Bihlo | Scott MacLachlan | S. MacLachlan | Alexander Bihlo | Rüdiger Brecht | François Gay‐Balmaz | W. Bauer | Rudiger Brecht | A. Bihlo | F. Gay‐Balmaz
[1] R. Heikes,et al. Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid , 1995 .
[2] W. Bauer,et al. Variational integrators for anelastic and pseudo-incompressible flows , 2017, Journal of Geometric Mechanics.
[3] Erik Lehto,et al. A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..
[4] J. Marsden,et al. Structure-preserving discretization of incompressible fluids , 2009, 0912.3989.
[5] Jean-Christophe Nave,et al. Conservative Methods for Dynamical Systems , 2016, SIAM J. Numer. Anal..
[6] Chris Budd,et al. Symmetry-adapted moving mesh schemes for the nonlinear Schrödinger equation , 2001 .
[7] Jason Frank,et al. A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations , 2003 .
[8] Martin J. Gander,et al. B-Methods for the Numerical Solution of Evolution Problems with Blow-Up Solutions Part I: Variation of the Constant , 2015, SIAM J. Sci. Comput..
[9] Jean-Christophe Nave,et al. On the Arbitrarily Long-Term Stability of Conservative Methods , 2016, SIAM J. Numer. Anal..
[10] A. Arakawa,et al. A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .
[11] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[12] Bram van Leer,et al. High-order finite-volume methods for the shallow-water equations on the sphere , 2010, J. Comput. Phys..
[13] Fernando Casas,et al. A Concise Introduction to Geometric Numerical Integration , 2016 .
[14] B. Leimkuhler,et al. Simulating Hamiltonian Dynamics , 2005 .
[15] D. Randall,et al. A Potential Enstrophy and Energy Conserving Numerical Scheme for Solution of the Shallow-Water Equations on a Geodesic Grid , 2002 .
[16] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[17] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[18] Colin J. Cotter,et al. A Framework for Mimetic Discretization of the Rotating Shallow-Water Equations on Arbitrary Polygonal Grids , 2012, SIAM J. Sci. Comput..
[19] Mathieu Desbrun,et al. Variational discretization for rotating stratified fluids , 2013 .
[20] Werner Bauer,et al. Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations , 2017, 1711.10617.
[21] Evan S. Gawlik,et al. Geometric, variational discretization of continuum theories , 2010, 1010.4851.
[22] Natasha Flyer,et al. A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[23] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[24] Colin J. Cotter,et al. A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes , 2015, J. Comput. Phys..
[25] David A. Randall,et al. Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid. Part II. A Detailed Description of the Grid and an Analysis of Numerical Accuracy , 1995 .
[26] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[27] Jörn Behrens,et al. Toward goal-oriented R-adaptive models in geophysical fluid dynamics using a generalized discretization approach , 2013 .
[28] William C. Skamarock,et al. Numerical representation of geostrophic modes on arbitrarily structured C-grids , 2009, J. Comput. Phys..
[29] John M. Lee. Riemannian Manifolds: An Introduction to Curvature , 1997 .
[30] Alexander Bihlo,et al. Symmetry-Preserving Numerical Schemes , 2016, 1608.02557.
[31] Andrew T. T. McRae,et al. Energy‐ and enstrophy‐conserving schemes for the shallow‐water equations, based on mimetic finite elements , 2013, 1305.4477.
[32] Roman O. Popovych,et al. Invariant Discretization Schemes for the Shallow-Water Equations , 2012, SIAM J. Sci. Comput..
[33] Christopher Eldred,et al. Total energy and potential enstrophy conserving schemes for the shallow water equations using Hamiltonian methods – Part 1: Derivation and properties , 2016 .
[34] Jerrold E. Marsden,et al. The Euler-Poincaré Equations in Geophysical Fluid Dynamics , 1999, chao-dyn/9903035.
[35] A. Mondino. ON RIEMANNIAN MANIFOLDS , 1999 .
[36] Jerrold E. Marsden,et al. Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties , 2008, Found. Comput. Math..