A new method for the solution of scattering problems

We present a new efficient algorithm for the solution of direct time-harmonic scattering problems based on the Laplace transform. This method does not rely on an explicit knowledge of a Green function or a series representation of the solution, and it can be used for the solution of problems with radially symmetric potentials and problems with waveguides. The starting point is an alternative characterization of outgoing waves called \emph{pole condition}, which is equivalent to Sommerfeld's radiation condition for problems with radially symmetric potentials. We obtain a new representation formula, which can be used for a numerical evaluation of the exterior field in a postprocessing step. Based on previous theoretical studies, we discuss the numerical realization of our algorithm and compare its performance to the PML method.