Circuit-Based Electrothermal Simulation of Power Devices by an Ultrafast Nonlinear MOR Approach

This paper presents an efficient circuit-based approach for the nonlinear dynamic electrothermal simulation of power devices and systems subject to radical self-heating. The strategy relies on the synthesis of a nonlinear compact thermal network extracted from a finite-element model by a novel model-order reduction method requiring a computational time orders of magnitude lower than conventional techniques. Unlike commonly employed approaches, the proposed network allows reconstructing the whole time evolution of the temperature field in all the points of the domain with high accuracy. Electrothermal simulations are enabled in a commercial SPICE-like simulator by coupling such a network with subcircuits that describe the electrical device behavior by accounting for the temperature dependence of the key physical parameters. As a case study, the dynamic electrothermal analysis of a packaged silicon carbide power MOSFET undergoing a short-circuit test is performed, showcasing the performance of the approach and highlighting the need of including the thermal nonlinearities to achieve reliable results.

[1]  Jia Tzer Hsu,et al.  A rational formulation of thermal circuit models for electrothermal simulation. I. Finite element method [power electronic systems] , 1996 .

[2]  H. C. de Graaff,et al.  Layout to circuit extraction for three-dimensional thermal-electrical circuit simulation of device structures , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[4]  Alessandro Magnani,et al.  Compact Dynamic Modeling for Fast Simulation of Nonlinear Heat Conduction in Ultra-Thin Chip Stacking Technology , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[5]  V. d'Alessandro,et al.  Short-circuit failure mechanism of SiC power MOSFETs , 2015, 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[6]  B. J. Baliga,et al.  Short-circuit capability of 1200V SiC MOSFET and JFET for fault protection , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[7]  P. R. Gray,et al.  Computer simulation of integrated circuits in the presence of electrothermal interaction , 1976 .

[8]  Jun Wang,et al.  Characterization, Modeling, and Application of 10-kV SiC MOSFET , 2008, IEEE Transactions on Electron Devices.

[9]  Paolo Maffezzoni,et al.  An Arnoldi based thermal network reduction method for electro-thermal analysis , 2003 .

[10]  Rik Jos,et al.  Stable operation of high mobility 4H-SiC MOSFETs at elevated temperatures , 2005 .

[11]  J. Lienhard A heat transfer textbook , 1981 .

[12]  E. Dallago,et al.  Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory , 1998 .

[13]  B. Geeraerts,et al.  Electrothermal simulation and design of integrated circuits , 1994, IEEE J. Solid State Circuits.

[14]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[15]  Paolo Maffezzoni,et al.  Compact modeling of electrical devices for electrothermal analysis , 2003 .

[16]  L. Codecasa,et al.  Compact Models of Dynamic Thermal Networks with Many Heat Sources , 2007, IEEE Transactions on Components and Packaging Technologies.

[17]  P. Maffezzoni,et al.  Compact thermal networks for modeling packages , 2004, IEEE Transactions on Components and Packaging Technologies.

[18]  S. Lindenkreuz,et al.  Fully coupled dynamic electro-thermal simulation , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[19]  Andrea Irace,et al.  Analysis of the UIS behavior of power devices by means of SPICE-based electrothermal simulations , 2013, Microelectron. Reliab..

[20]  Andrea Irace,et al.  FEM simulation approach to investigate electro-thermal behavior of power transistors in 3-D , 2013, Microelectron. Reliab..

[21]  Juraj Marek,et al.  Fast 3-D Electrothermal Device/Circuit Simulation of Power Superjunction MOSFET Based on SDevice and HSPICE Interaction , 2014, IEEE Transactions on Electron Devices.

[22]  L. Tolbert,et al.  Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs , 2016, IEEE Transactions on Power Electronics.

[23]  J. Millan,et al.  Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors , 2006 .

[24]  T. V. Thang,et al.  Gate Oxide Reliability Issues of SiC MOSFETs Under Short-Circuit Operation , 2015, IEEE Transactions on Power Electronics.

[25]  Takashi Hikihara,et al.  Thermal instability effects in SiC Power MOSFETs , 2012, Microelectron. Reliab..

[26]  Andrea Irace,et al.  Thermal-aware design and fault analysis of a DC/DC parallel resonant converter , 2014, Microelectron. Reliab..

[27]  C. M. Johnson,et al.  Automated Fast Extraction of Compact Thermal Models for Power Electronic Modules , 2013, IEEE Transactions on Power Electronics.

[28]  M. Cotorogea Using analog behavioral modeling in PSpice for the implementation of subcircuit-models of power devices , 1998, 6th IEEE Power Electronics Congress. Technical Proceedings. CIEP 98 (Cat. No.98TH8375).

[29]  M. Stecher,et al.  Electrothermal Simulation of Self-Heating in DMOS Transistors up to Thermal Runaway , 2013, IEEE Transactions on Electron Devices.

[30]  Qing Guo,et al.  Cryogenic and high temperature performance of 4H-SiC power MOSFETs , 2013, 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[31]  M. Rencz,et al.  Studies on the nonlinearity effects in dynamic compact model generation of packages , 2004, IEEE Transactions on Components and Packaging Technologies.

[32]  Lin Cheng,et al.  Static Performance of 20 A, 1200 V 4H-SiC Power MOSFETs at Temperatures of −187°C to 300°C , 2012, Journal of Electronic Materials.

[33]  W. Van Petegem,et al.  Electrothermal simulation of integrated circuits , 1990, Sixth Annual IEEE Proceedings Semiconductor Thermal and Temperature Measurement Symposium.

[34]  V. d'Alessandro,et al.  SPICE modeling and dynamic electrothermal simulation of SiC power MOSFETs , 2014, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[35]  Christian Fazi,et al.  Analysis of the temperature dependent thermal conductivity of silicon carbide for high temperature applications , 2000 .

[36]  E. Dallago,et al.  Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. II. Practice and experiments , 1998 .

[37]  Xinke Wu,et al.  An All-SiC High-Frequency Boost DC–DC Converter Operating at 320 °C Junction Temperature , 2014, IEEE Transactions on Power Electronics.

[38]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[39]  K. Górecki,et al.  Nonlinear Compact Thermal Model of Power Semiconductor Devices , 2010, IEEE Transactions on Components and Packaging Technologies.

[40]  Peter Schwarz,et al.  Electro-thermal circuit simulation using simulator coupling , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[41]  C. Zetterling,et al.  SiC power devices — Present status, applications and future perspective , 2011, 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs.

[42]  D. L. Blackburn,et al.  Simulating the dynamic electrothermal behavior of power electronic circuits and systems , 1993 .

[43]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[44]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[45]  Thomas Zimmer,et al.  A Geometry Scalable Model for Nonlinear Thermal Impedance of Trench Isolated HBTs , 2015, IEEE Electron Device Letters.

[46]  Juraj Marek,et al.  Compact model of power MOSFET with temperature dependent Cauer RC network for more accurate thermal simulations , 2014 .