Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy

To make use of deep learning (DL) methods to detect and remove ghosting artifacts in clinical magnetic resonance spectra of human brain.

[1]  Margarida Julià-Sapé,et al.  Quality of clinical brain tumor MR spectra judged by humans and machine learning tools , 2018, Magnetic resonance in medicine.

[2]  J. Suykens,et al.  Classification of brain tumours using short echo time 1H MR spectra. , 2004, Journal of magnetic resonance.

[3]  Prashant Parikh A Theory of Communication , 2010 .

[4]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[5]  de Beer R,et al.  LeuvenDepartement Elektrotechniek ESAT-SISTA / TR 1997-89 Fast removal of residual water in proton spectra 1 , 2022 .

[6]  D. Karthika Renuka,et al.  Spam Classification Based on Supervised Learning Using Machine Learning Techniques , 2011, 2011 International Conference on Process Automation, Control and Computing.

[7]  Miguel Morales-Sandoval,et al.  Evaluation of machine learning techniques for face detection and recognition , 2012, CONIELECOMP 2012, 22nd International Conference on Electrical Communications and Computers.

[8]  Carles Arús,et al.  Automated classification of short echo time in in vivo 1H brain tumor spectra: A multicenter study , 2003, Magnetic resonance in medicine.

[9]  D. Arnold,et al.  Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors , 1998, NMR in biomedicine.

[10]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[11]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[12]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[13]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[14]  Liang Tao,et al.  NMR FID signal enhancement via the oversampled Gabor transform using the Gaussian synthesis window , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[15]  C. -Z. Ye,et al.  Fuzzy rules to predict degree of malignancy in brain glioma , 2002, Medical and Biological Engineering and Computing.

[16]  Lovedeep Gondara,et al.  Medical Image Denoising Using Convolutional Denoising Autoencoders , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).

[17]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[18]  Andrew J. R. Simpson Deep Transform: Cocktail Party Source Separation via Complex Convolution in a Deep Neural Network , 2015, ArXiv.

[19]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[20]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[22]  Yu-Bin Yang,et al.  Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections , 2016, ArXiv.

[23]  Enhong Chen,et al.  Image Denoising and Inpainting with Deep Neural Networks , 2012, NIPS.

[24]  R. Kreis Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts , 2004, NMR in biomedicine.

[25]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[26]  Luca Maria Gambardella,et al.  Max-pooling convolutional neural networks for vision-based hand gesture recognition , 2011, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA).

[27]  Marc-André Weber,et al.  Mimicking the human expert: Pattern recognition for an automated assessment of data quality in MR spectroscopic images , 2008, Magnetic resonance in medicine.

[28]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[29]  Rolf Gruetter,et al.  MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T , 2009, Magnetic resonance in medicine.

[30]  Carles Arús,et al.  Automated quality control protocol for MR spectra of brain tumors , 2008, Magnetic resonance in medicine.

[31]  C Chauvin,et al.  Wavelets and related time‐frequency techniques in magnetic resonance spectroscopy , 2001, NMR in biomedicine.

[32]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[33]  Ronald M. Summers,et al.  Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique , 2016 .

[34]  Serge J. Belongie,et al.  Residual Networks Behave Like Ensembles of Relatively Shallow Networks , 2016, NIPS.

[35]  E Moser,et al.  Proton T 1 and T 2 relaxation times of human brain metabolites at 3 Tesla , 2001, NMR in biomedicine.

[36]  Jan Luts,et al.  Effect of feature extraction for brain tumor classification based on short echo time 1H MR spectra , 2008, Magnetic resonance in medicine.

[37]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[38]  J. Leclerc,et al.  Time-frequency representation of damped sinusoids , 1991 .

[39]  Richard McKinley,et al.  Automatic quality control in clinical 1H MRSI of brain cancer , 2016, NMR in biomedicine.