Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft

The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.

[1]  Bruce A. Conway,et al.  Automated Interplanetary Mission Planning , 2015 .

[2]  Matthew A. Vavrina,et al.  Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study , 2014 .

[3]  Robert H. Leary,et al.  Global Optimization on Funneling Landscapes , 2000, J. Glob. Optim..

[4]  Raymond G. Merrill,et al.  Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions , 2015 .

[5]  Geoffrey A. Landis Teleoperation from Mars Orbit: A proposal for Human Exploration , 2008 .

[6]  Low energy trajectories to Mars via gravity assist from Venus to earth , 1991 .

[7]  Jon A. Sims,et al.  Preliminary Design of Low-Thrust Interplanetary Missions , 1997 .

[8]  Bruce A. Conway,et al.  Automated Interplanetary Trajectory Planning , 2012 .

[9]  Theodore N. Edelbaum,et al.  Propulsion Requirements for Controllable Satellites , 1961 .

[10]  Jacob Englander Automated trajectory planning for multiple-flyby interplanetary missions , 2013 .

[11]  Bruce A. Conway,et al.  Automated Mission Planning via Evolutionary Algorithms , 2012 .

[12]  P. Rosenblatt The origin of the Martian moons revisited , 2011 .

[13]  Jacob A. Englander,et al.  Tuning Monotonic Basin Hopping: Improving the Efficiency of Stochastic Search as Applied to Low-Thrust Trajectory Optimization , 2014 .

[14]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[15]  G. Rauwolf,et al.  Near-optimal low-thrust orbit transfers generated by a genetic algorithm , 1996 .

[16]  Bruce A. Conway An improved algorithm due to laguerre for the solution of Kepler's equation , 1986 .

[17]  Bruce A. Conway,et al.  Robust global optimization of low-thrust, multiple-flyby trajectories , 2014 .

[18]  Matthew A. Vavrina,et al.  Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design , 2006 .

[19]  Matthew A. Vavrina,et al.  Global Low-Thrust Trajectory Optimization through Hybridization of a Genetic Algorithm and a Direct Method , 2008 .

[20]  Dario Izzo,et al.  Low-thrust trajectory design as a constrained global optimization problem , 2011 .

[21]  Bruce A. Conway,et al.  Analytical partial derivative calculation of the sims-flanagan transcription match point constraints , 2014 .

[22]  Bernardetta Addis,et al.  A global optimization method for the design of space trajectories , 2011, Comput. Optim. Appl..

[23]  Nathan J. Strange,et al.  Using Gravity Assists in the Earth-moon System as a Gateway to the Solar System , 2012 .

[24]  T. H. Sweetser Phobos First! — The Right Focus for NASA's Vision , 2012 .

[25]  Victoria Coverstone-Carroll,et al.  Near-Optimal Low-Thrust Trajectories via Micro-Genetic Algorithms , 1997 .

[26]  Cesar Ocampo Spacecraft Trajectory Optimization: Elements of a Software System for Spacecraft Trajectory Optimization , 2010 .

[27]  Edmondo Minisci,et al.  Analysis of Some Global Optimization Algorithms for Space Trajectory Design , 2010 .