Numerical quadrature over smooth, closed surfaces

The numerical approximation of definite integrals, or quadrature, often involves the construction of an interpolant of the integrand and its subsequent integration. In the case of one dimension it is natural to rely on polynomial interpolants. However, their extension to two or more dimensions can be costly and unstable. An efficient method for computing surface integrals on the sphere is detailed in the literature (Reeger & Fornberg 2016 Stud. Appl. Math. 137, 174–188. (doi:10.1111/sapm.12106)). The method uses local radial basis function interpolation to reduce computational complexity when generating quadrature weights for any given node set. This article generalizes this method to arbitrary smooth closed surfaces.

[1]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[2]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[3]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[4]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[5]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[6]  John P. Snyder,et al.  Map Projections: A Working Manual , 2012 .

[7]  Bengt Fornberg,et al.  On spherical harmonics based numerical quadrature over the surface of a sphere , 2014, Advances in Computational Mathematics.

[8]  Mario Alberto Storti,et al.  Full numerical quadrature of weakly singular double surface integrals in Galerkin boundary element methods , 2011 .

[9]  Bengt Fornberg,et al.  On spherical harmonics based numerical quadrature over the surface of a sphere , 2014, Advances in Computational Mathematics.

[10]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[11]  Wen Chen,et al.  Recent Advances in Radial Basis Function Collocation Methods , 2013 .

[12]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[13]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[14]  Kendall Atkinson,et al.  Numerical integration on the sphere , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[15]  B. Fornberg,et al.  Radial Basis Function-Generated Finite Differences: A Mesh-Free Method for Computational Geosciences , 2015 .

[16]  Joseph D. Ward,et al.  Kernel based quadrature on spheres and other homogeneous spaces , 2012, Numerische Mathematik.

[17]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[18]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[19]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[20]  Gregory Beylkin,et al.  Rotationally invariant quadratures for the sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Jaydeep P. Bardhan,et al.  Efficient numerical algorithms for surface formulations of mathematical models for biomolecule analysis and design , 2006 .

[22]  P. Bazant,et al.  Efficient Numerical Integration on the Surface of a Sphere , 1986 .

[23]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[24]  Alvise Sommariva,et al.  INTEGRATION BY RBF OVER THE SPHERE , 2005 .

[25]  Patrick Keast,et al.  Fully Symmetric Integration Formulas for the Surface of the Sere in S Dimensions , 1983 .

[26]  G. Green An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism , 2008, 0807.0088.

[27]  David Chien Numerical evaluation of surface integrals in three dimensions , 1995 .

[28]  V. I. Lebedev,et al.  Quadratures on a sphere , 1976 .

[29]  A. Stroud Approximate calculation of multiple integrals , 1973 .