Unusual magnetic behavior of TiO2-doped CuFeO2 crystals (CuFe1−xTixO2) grown by the optical floating zone method

Crystals of synthetic delafossite with greatly affected magnetic properties can be prepared by doping with a limited range of Ti contents.

[1]  Fenglin Yang,et al.  Synergistic activation of sulfate by TiO2 nanotube arrays-based electrodes for berberine degradation: Insight into pH-dependant ORR-strengthened reactive radicals co-generation mechanism , 2022, Applied Catalysis B: Environmental.

[2]  B. Goodman,et al.  Influence of Zn2+ doping on the microstructure and magnetic properties of CuFeO2 , 2022, Ceramics International.

[3]  Z. Xia,et al.  Origin of Magnetic Dielectric Effect in Geometry Frustrated CuFe1−xMnxO2 Single Crystal , 2022, Journal of Superconductivity and Novel Magnetism.

[4]  Tao Li,et al.  Influence of different preparation method on the microstructure and physical properties of CuFeO2 , 2022, Journal of Crystal Growth.

[5]  Baoyi Wang,et al.  Defect characteristics, local electron density, and magnetic properties of rare Earth-doped CuFeO2 ceramics , 2020 .

[6]  F. Ye,et al.  Effect of Mn doping on the microstructure and magnetic properties of CuFeO2 ceramics , 2020, Journal of Advanced Ceramics.

[7]  Baoyi Wang,et al.  Effect of Transition Metal Ion Doping on the Microstructure, Defect Evolution, and Magnetic and Magnetocaloric Properties of CuFeO2 Ceramics , 2020, Journal of Superconductivity and Novel Magnetism.

[8]  S. Mishra,et al.  Role of charge doping and distortions on the structural, electrical, and magnetic properties of modified CuFeO2 compounds , 2020 .

[9]  Z. Chen,et al.  Effect of Ge doping on microstructure, defect and magnetic properties of CuFeO2 multiferroics , 2020 .

[10]  D. Schlom,et al.  Growth of CuFeO2 single crystals by the optical floating-zone technique , 2019, Journal of Crystal Growth.

[11]  A. Benyoussef,et al.  Unexpected magnetic behavior of Ga doped CuFe1-xGaxO2 delafossite, x = 0.04: First principle calculation and Monte Carlo simulation , 2019, The European Physical Journal Plus.

[12]  F. Ye,et al.  Structural, Magnetic, and Giant Dielectric Properties of Gd Substituted CuFeO2 Composites , 2019, Journal of Superconductivity and Novel Magnetism.

[13]  Baoyi Wang,et al.  Investigations of Ti-substituted CuFeO2 ceramics on the structure, defects, the local electron density and magnetic properties , 2019, Journal of Magnetism and Magnetic Materials.

[14]  G. Vourlias,et al.  Biological relevance of CuFeO2 nanoparticles: Antibacterial and anti-inflammatory activity, genotoxicity, DNA and protein interactions. , 2019, Materials science & engineering. C, Materials for biological applications.

[15]  M. Safdar,et al.  Structural and magnetic studies of Ce-Mn doped M-type SrFe12O19 hexagonal ferrites by sol-gel auto-combustion method , 2019, Journal of Magnetism and Magnetic Materials.

[16]  B. Goodman,et al.  Evolution of microstructure, optical, and magnetic properties in multiferroic CuFe1-Sn O2 (x = 0–0.05) , 2019, Ceramics International.

[17]  Ashok V. Humbe,et al.  Investigations of magnetic and ferroelectric properties of multiferroic Sr-doped bismuth ferrite , 2018, Applied Physics A.

[18]  F. Ye,et al.  Microstructure evolution and magnetic properties of Eu doped CuFeO2 multiferroic ceramics studied by positron annihilation , 2018, Ceramics International.

[19]  Feng Yang,et al.  Influence of nonmagnetic Ga ions on the magnetoelectric coupling in CuFe1−xGaxO2 , 2018, Journal of Physics D: Applied Physics.

[20]  Ayan Sarkar,et al.  Nano-engineering of p–n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation , 2017, Nanotechnology.

[21]  S. Maensiri,et al.  Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1−xCrxO2 (x  =  0.25, 0.5, 0.75) , 2015 .

[22]  G. Balakrishnan,et al.  Raman spectroscopic studies of CuFeO2 at high pressures , 2015 .

[23]  C. Zheng,et al.  Effect of Sn substitution on the structure, morphology and photoelectricity properties of high c-axis oriented CuFe1−xSnxO2 thin film , 2015 .

[24]  J. Chen,et al.  Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics , 2014 .

[25]  Z. Xia,et al.  Unusual doping effect of non-magnetic ion on magnetic properties of CuFe1−xGaxO2 , 2014 .

[26]  C. Colin,et al.  Structural and magnetoelectric interactions of (Ca, Mg)-doped polycrystalline multiferroic CuFeO2 , 2014 .

[27]  T. Ren,et al.  Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO3 , 2010 .

[28]  C. Zhong,et al.  Spin-lattice coupling and helical-spin driven ferroelectric polarization in multiferroic CuFeO2 , 2010 .

[29]  R. Katiyar,et al.  Raman spectroscopy and field emission characterization of delafossite CuFeO2 , 2010 .

[30]  Zhifeng Ren,et al.  Multiferroicity: the coupling between magnetic and polarization orders , 2009, 0908.0662.

[31]  M. Kumar,et al.  Magnetic field induced phase transition in multiferroic BiFe1−xTixO3 ceramics prepared by rapid liquid phase sintering , 2007 .

[32]  Q. Su,et al.  The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO–B2O3–P2O5 glasses , 2007 .

[33]  C. Nan,et al.  Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films , 2006 .

[34]  J. Koberstein,et al.  Copper oxide nanocrystals. , 2005, Journal of the American Chemical Society.

[35]  T. Goto,et al.  High-field magnetization process in the triangular lattice antiferromagnet CuFeO2 up to 100 T , 1994 .