Precise Eye Localization through a General-to-specific Model Definition

We present a method for precise eye localization that uses two Support Vector Machines trained on properly selected Haar wavelet coefficients. The evaluation of our technique on many standard databases exhibits very good performance. Furthermore, we study the strong correlation between the eye localization error and the face recognition rate.

[1]  Patrick J. Flynn,et al.  An evaluation of multimodal 2D+3D face biometrics , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Paola Campadelli,et al.  Eye localization for face recognition , 2006, RAIRO Theor. Informatics Appl..

[3]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System: Its Purpose, Features, and Structure , 2003, ICVS.

[4]  Bruce A. Draper,et al.  How features of the human face affect recognition: a statistical comparison of three face recognition algorithms , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[5]  Jiri Matas,et al.  Feature-based affine-invariant localization of faces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Xiaogang Wang,et al.  A unified framework for subspace face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Tomaso A. Poggio,et al.  Trainable pedestrian detection , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[8]  Qiang Ji,et al.  Automatic Eye Detection and Its Validation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[9]  Wen Gao,et al.  Nonlinear face recognition based on maximum average margin criterion , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Timothy F. Cootes,et al.  A comparison of shape constrained facial feature detectors , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[11]  Sami Romdhani,et al.  Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Pengfei Zhao,et al.  Robust Precise Eye Location by Adaboost and SVM Techniques , 2005, ISNN.

[13]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System , 2005, Machine Vision and Applications.

[14]  Hakan Cevikalp,et al.  Discriminative common vectors for face recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Fabrizio Smeraldi,et al.  Retinal vision applied to facial features detection and face authentication , 2002, Pattern Recognit. Lett..

[16]  Jongsun Kim,et al.  Effective representation using ICA for face recognition robust to local distortion and partial occlusion , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[19]  Paola Campadelli,et al.  A face recognition system based on automatically determined facial fiducial points , 2006, Pattern Recognit..

[20]  Ning Wang,et al.  Robust precise eye location under probabilistic framework , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[21]  Chengjun Liu,et al.  Gabor-based kernel PCA with fractional power polynomial models for face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Paola Campadelli,et al.  Face localization in color images with complex background , 2005, Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05).

[23]  Klaus J. Kirchberg,et al.  Robust Face Detection Using the Hausdorff Distance , 2001, AVBPA.

[24]  Ian R. Fasel,et al.  A generative framework for real time object detection and classification , 2005, Comput. Vis. Image Underst..