Numerical Integration of Damped Maxwell Equations

We study the numerical time integration of Maxwell's equations from electromagnetism. Following the method of lines approach we start from a general semidiscrete Maxwell system for which a number of time-integration methods are considered. These methods have in common an explicit treatment of the curl terms. Central in our investigation is the question how to efficiently raise the temporal convergence order beyond the standard order of two, in particular in the presence of an explicitly or implicitly treated damping term which models conduction.

[1]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[2]  Jan G. Verwer,et al.  On Time Staggering for Wave Equations , 2007, J. Sci. Comput..

[3]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[4]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[5]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[6]  D. Harutyunyan Adaptive vector finite element methods for the Maxwell equations , 2007 .

[7]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[8]  Bengt Fornberg,et al.  Stability and accuracy of time-extrapolated ADI-FDTD methods for solving wave equations , 2007 .

[9]  Zhongxiang Shen,et al.  A generalized higher order finite-difference time-domain method and its application in guided-wave problems , 2003 .

[10]  R. P. K. Chan,et al.  Generalized symmetric Runge-Kutta methods , 1993, Computing.

[11]  Jan G. Verwer,et al.  On stabilized integration for time-dependent PDEs , 2006, J. Comput. Phys..

[12]  Tasso J. Kaper,et al.  N th-order operator splitting schemes and nonreversible systems , 1996 .

[13]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[14]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[15]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[16]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[17]  R. P. K. Chan,et al.  Extrapolation of symplectic methods for Hamiltonian problems , 2000 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Daniel A. White,et al.  A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..

[20]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[21]  Tobin A. Driscoll,et al.  Staggered Time Integrators for Wave Equations , 2000, SIAM J. Numer. Anal..

[22]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  J. M. Sanz-Serna,et al.  Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[26]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[27]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[28]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .

[29]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[30]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[31]  G. Rodrigue,et al.  High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations , 2004, IEEE Transactions on Antennas and Propagation.

[32]  Fernando Casas,et al.  Raising the order of geometric numerical integrators by composition and extrapolation , 2005, Numerical Algorithms.