Some explicit upper bounds on the class number and regulator of a cubic field with negative discriminant.
暂无分享,去创建一个
[1] R. Mollin. Lower bounds for class numbers of real quadratic fields , 1986 .
[2] H. C. Williams,et al. Continued fractions and number-theoretic computations , 1985 .
[3] J. Buchmann. Abschätzung der Periodenlänge einer verallgemeinerten Kettenbruchentwicklung. , 1985 .
[4] K. McCurley. Explicit estimates for $\theta (x;3,l)$ and $\psi (x;3,l)$ , 1984 .
[5] T. Cusick. Lower bounds for regulators , 1984 .
[6] Harold Davenport. Multiplicative number theory / Harold Davenport ; revised by Hugh L. Montgomery , 1980 .
[7] J. Pintz. Corrigendum to the paper "Elementary methods in the theory of L-functions, VII. Upper bound for L(1,χ)" , 1977 .
[8] R. J. Rudman. ON THE FUNDAMENTAL UNIT OF A PURELY CUBIC FIELD , 1973 .
[9] A. Lavrik. The Siegel-Brauer theorem concerning parameters of algebraic number fields , 1970 .
[10] SOME ALGEBRAIC NUMBER THEORY ESTIMATES BASED ON THE DEDEKIND ETA-FUNCTION.* , 1956 .
[11] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[12] H. Hasse. Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage , 1930 .