Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated Cα = Cβ configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO3 groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, Iqui/Iben. The highest power conversion efficiency for ...

[1]  K. Ho,et al.  Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells , 2012 .

[2]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[3]  V. Pruneri,et al.  Highly stable Al-doped ZnO transparent conductors using an oxidized ultrathin metal capping layer at its percolation thickness , 2011 .

[4]  S. Lodha,et al.  Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide. , 2014, ACS applied materials & interfaces.

[5]  T. Hanajiri,et al.  Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells , 2016 .

[6]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[7]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[8]  M. Torkkeli,et al.  X-ray Diffraction Studies of Multiple Orientation in Poly(9,9-bis(2-ethylhexyl)fluorene-2,7-diyl) Thin Films , 2003 .

[9]  S. Srivastava,et al.  Reversible structural transformation and enhanced performance of PEDOT:PSS-based hybrid solar cells driven by light intensity. , 2015, ACS applied materials & interfaces.

[10]  L. Pettersson,et al.  Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal , 1998 .

[11]  Qiming Liu,et al.  Optical anisotropy in solvent-modified poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) and its effect on the photovoltaic performance of crystalline silicon/organic heterojunction solar cells , 2013 .

[12]  Silke Christiansen,et al.  Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 % , 2014 .

[13]  Olle Inganäs,et al.  Organic photovoltaics: Avoiding indium , 2011 .

[14]  A. Helmy,et al.  Etch-free patterning of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) for optoelectronics. , 2015, ACS applied materials & interfaces.

[15]  T. Sasaki,et al.  Self-Assembled Multilayers of Titania Nanoparticles and Nanosheets with Polyelectrolytes , 2003 .

[16]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[17]  K. Leung,et al.  High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition , 2014 .

[18]  P. Wang,et al.  Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. , 2014, ACS applied materials & interfaces.

[19]  S. Fujita,et al.  Erratum: “Linear Source Ultrasonic Spray Chemical Vapor Deposition Method for Fabrication of ZnMgO Films and Ultraviolet Photodetectors” , 2006 .

[20]  Jean-Luc Duvail,et al.  Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium , 2001 .

[21]  Jianyong Ouyang,et al.  Polymer Optoelectronic Devices with High‐Conductivity Poly(3,4‐Ethylenedioxythiophene) Anodes , 2004 .

[22]  Olle Inganäs,et al.  Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate) , 2002 .

[23]  Hou Yanbing,et al.  Polymer solar cells based on a PEDOT:PSS layer spin-coated under the action of an electric field , 2010 .

[24]  Kurt Hingerl,et al.  Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives☆ , 2013, Thin solid films.

[25]  A. Pron,et al.  Electrochemical oxidation of poly(3,4-ethylenedioxythiophene) — “in situ” conductivity and spectroscopic investigations , 2000 .

[26]  A. Monkman,et al.  A comparison of the optical constants of aligned and unaligned thin polyfluorene films , 2004 .

[27]  Amr S Helmy,et al.  Influence of nonadiabatic annealing on the morphology and molecular structure of PEDOT-PSS films. , 2009, The journal of physical chemistry. B.

[28]  M. Aegerter,et al.  Transparent conducting sol-gel ATO coatings for display applications by an improved dip coating technique , 2006 .

[29]  Qiming Liu,et al.  Real-time measurement of optical anisotropy during film growth using a chemical mist deposition of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) , 2014 .

[30]  W. Lövenich,et al.  Organic-silicon Solar Cells Exceeding 20% Efficiency , 2015 .

[31]  T. Mizokuro,et al.  Fabrication of polymer thin films with in-depth dye-dispersed structures by the vacuum spray method , 2008 .

[32]  Serge Lefrant,et al.  In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT) , 1999 .

[33]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .