Lipschitz and Fourier type conditions with moduli of continuity in rank 1 symmetric spaces
暂无分享,去创建一个
[1] Michael Ruzhansky,et al. Titchmarsh theorems for Fourier transforms of Hölder–Lipschitz functions on compact homogeneous manifolds , 2017, Monatshefte für Mathematik.
[2] S. Samko,et al. Integral Operators in Non-Standard Function Spaces , 2016 .
[3] Sergey Tikhonov,et al. Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates , 2012, J. Approx. Theory.
[4] S. Volosivets. Fourier transforms and generalized Lipschitz classes in uniform metric , 2011 .
[5] M. Pinsky,et al. Growth properties of Fourier transforms via moduli of continuity , 2008 .
[6] S. Platonov. The Fourier Transform of Functions Satisfying the Lipschitz Condition on Rank 1 Symmetric Spaces , 2005 .
[7] Sigurdur Helgason,et al. Geometric Analysis on Symmetric Spaces , 1994 .
[8] È. Vinberg,et al. Spaces of constant curvature , 1993 .
[9] Mogens Flensted‐Jensen,et al. GROUPS AND GEOMETRIC ANALYSIS Integral Geometry, Invariant Differential Operators, and Spherical Functions (Pure and Applied Mathematics: A Series of Monographs and Textbooks) , 1985 .
[10] Sigurdur Helgason,et al. A duality for symmetric spaces with applications to group representations , 1970 .
[11] A. Offord. Introduction to the Theory of Fourier Integrals , 1938, Nature.