Analysis of a one-dimensional free boundary flow problem

A one-dimensional free surface problem is considered. It consists in Burgers’ equation with an additional diffusion term on a moving interval. The well-posedness of the problem is investigated and existence and uniqueness results are obtained locally in time. A semi-discretization in space with a piecewise linear finite element method is considered. A priori and a posteriori error estimates are given for the semi-discretization in space. A time splitting scheme allows to obtain numerical results in agreement with the theoretical investigations.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[2]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[3]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[4]  J. Rappaz,et al.  Regular Article: Numerical Simulation of Free Surface Flows , 1999 .

[5]  S. Kutluay,et al.  Numerical solution of one-dimesional Burgers equation: explicit and exact-explicit finite difference methods , 1999 .

[6]  R. LeVeque Numerical methods for conservation laws , 1990 .

[7]  G. Biondini,et al.  On the Burgers equation with moving boundary , 2001 .

[8]  D. Hilhorst,et al.  The well-posedness of a free boundary problem for Burgers' equation , 1994 .

[9]  V. Solonnikov Solvability of the problem of evolution of an isolated volume of viscous, incompressible capillary fluid , 1986 .

[10]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[11]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[12]  Y. Maday,et al.  COUPLAGE FLUIDE-STRUCTURE. UN MODELE SIMPLIFIE EN DIMENSION 1 , 1994 .

[13]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[14]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[15]  A. Caboussat ANALYSIS AND NUMERICAL SIMULATION OF FREE SURFACE FLOWS , 2004 .

[16]  H. Kardestuncer,et al.  Finite element handbook , 1987 .