Skeleton pruning as trade-off between skeleton simplicity and reconstruction error

Skeletons can be viewed as a compact shape representation in that each shape can be completely reconstructed from its skeleton. However, the usefulness of a skeletal representation is strongly limited by its instability. Skeletons suffer from contour noise in that small contour deformation may lead to large structural changes in the skeleton. A large number of skeleton computation and skeleton pruning approaches has been proposed to address this issue. Our approach differs fundamentally in the fact that we cast skeleton pruning as a trade-off between skeleton simplicity and shape reconstruction error. An ideal skeleton of a given shape should be the skeleton with a simplest possible structure that provides a best possible reconstruction of a given shape. To quantify this trade-off, we propose that the skeleton simplicity corresponds to model simplicity in the Bayesian framework, and the shape reconstruction accuracy is expressed as goodness of fit to the data. We also provide a simple algorithm to approximate the maximum of the Bayesian posterior probability which defines an order for iteratively removing the end branches to obtain the pruned skeleton. Presented experimental results obtained without any parameter tuning clearly demonstrate that the resulting skeletons are stable to boundary deformations and intra class shape variability.

[1]  H. Blum Biological shape and visual science (part I) , 1973 .

[2]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[3]  Longin Jan Latecki,et al.  Contour Grouping Based on Local Symmetry , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[6]  Longin Jan Latecki,et al.  Path Similarity Skeleton Graph Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[8]  Hongyuan Wang,et al.  Skeleton growing and pruning with bending potential ratio , 2011, Pattern Recognit..

[9]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Longin Jan Latecki,et al.  Discrete Skeleton Evolution , 2007, EMMCVPR.

[12]  Ghassan Hamarneh,et al.  GMAT : The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Intelligent Pruning , 2008 .

[13]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[14]  Ghassan Hamarneh,et al.  The Groupwise Medial Axis Transform for Fuzzy Skeletonization and Pruning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Sven J. Dickinson,et al.  Canonical Skeletons for Shape Matching , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[16]  BaiXiang,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007 .

[17]  Manish Singh,et al.  Bayesian estimation of the shape skeleton , 2010 .

[18]  Sven J. Dickinson,et al.  Multiscale Symmetric Part Detection and Grouping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  David Malah,et al.  Morphological reduction of skeleton redundancy , 1994, Signal Process..

[20]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[21]  Sibel Tari,et al.  An axis-based representation for recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[23]  Stephen M. Pizer,et al.  Untangling the Blum Medial Axis Transform , 2003, International Journal of Computer Vision.

[24]  Zhuowen Tu,et al.  Active skeleton for non-rigid object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[25]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[26]  Gabriella Sanniti di Baja,et al.  Hierarchical Decomposition of Multiscale Skeletons , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[28]  F. Meyer Skeletons and perceptual graphs , 1989 .

[29]  V. T. Rajan,et al.  Voronoi diagrams of polygons: A framework for shape representation , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[31]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[32]  Robert Kohn,et al.  Representation and self-similarity of shapes , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[33]  Aykut Erdem,et al.  Disconnected Skeleton: Shape at Its Absolute Scale , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Kin-Man Lam,et al.  Extraction of the Euclidean skeleton based on a connectivity criterion , 2003, Pattern Recognit..

[35]  Kaleem Siddiqi,et al.  Robust and efficient skeletal graphs , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[36]  Edwin R. Hancock,et al.  Correcting Curvature-Density Effects in the Hamilton–Jacobi Skeleton , 2006, IEEE Transactions on Image Processing.

[37]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[38]  Xue Liu,et al.  CASE: Connectivity-Based Skeleton Extraction in Wireless Sensor Networks , 2009, IEEE INFOCOM 2009.

[39]  Dan Schonfeld,et al.  Morphological representation of discrete and binary images , 1991, IEEE Trans. Signal Process..

[40]  Yaorong Ge,et al.  On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Sven J. Dickinson,et al.  From skeletons to bone graphs: Medial abstraction for object recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Petros Maragos,et al.  Morphological skeleton representation and coding of binary images , 1984, IEEE Trans. Acoust. Speech Signal Process..

[44]  Kaleem Siddiqi,et al.  Ligature Instabilities in the Perceptual Organization of Shape , 1999, Comput. Vis. Image Underst..

[45]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[46]  Stelios Krinidis,et al.  A Skeleton Family Generator via Physics-Based Deformable Models , 2009, IEEE Transactions on Image Processing.

[47]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[48]  W. Eric L. Grimson,et al.  Fixed topology skeletons , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[49]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Yuan Yan Tang,et al.  Skeletonization of Ribbon-Like Shapes Based on a New Wavelet Function , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Alfred M. Bruckstein,et al.  Skeletonization via Distance Maps and Level Sets , 1995, Comput. Vis. Image Underst..

[52]  Gabriella Sanniti di Baja,et al.  Euclidean skeleton via centre-of-maximal-disc extraction , 1993, Image Vis. Comput..

[53]  Christopher M. Gold,et al.  Map generalization by skeleton retraction , 2001 .