Electrocatalytic CO2 Reduction to Syngas

[1]  M. Fan,et al.  Enhancing CO2 Electroreduction to Syngas by Active Protons of Imidazolium Ionic Liquids: From Performance to Mechanism , 2022, Applied Catalysis B: Environmental.

[2]  Karen Chan,et al.  Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction , 2022, Nature Communications.

[3]  Liu Deng,et al.  Pd-SnO2 Interface Enables Synthesis of Syngas with Controllable H2/CO Ratios by Electrocatalytic Reduction of CO2 , 2022, Applied Catalysis B: Environmental.

[4]  B. Hwang,et al.  Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products , 2022, Advanced Functional Materials.

[5]  Dingsheng Wang,et al.  Bi/Zn Dual Single‐Atom Catalysts for Electroreduction of CO2 to Syngas , 2022, ChemCatChem.

[6]  Shiguo Zhang,et al.  Dual single-cobalt atom-based carbon electrocatalysts for efficient CO2-to-syngas conversion with industrial current densities , 2021 .

[7]  I. Yentekakis,et al.  A Review of Recent Efforts to Promote Dry Reforming of Methane (DRM) to Syngas Production via Bimetallic Catalyst Formulations , 2021 .

[8]  Kai Zhang,et al.  Advances and Challenges for Electrochemical Reduction of CO2 to CO: From Fundamental to Industrialization. , 2021, Angewandte Chemie.

[9]  Changhua An,et al.  Surface-tuning nanoporous AuCu3 engineering syngas proportion by electrochemical conversion of CO2 , 2021, Nano Research.

[10]  Z. Mi,et al.  Efficient photoelectrochemical conversion of CO2 to syngas by photocathode engineering , 2020 .

[11]  Hokyung Choi,et al.  Steam gasification of chars of ash-free coals extracted using 1-methylnaphthalene and N-methyl-2-pyrrolidone , 2020 .

[12]  G. He,et al.  In-Situ Surface-Enhanced Raman Spectroscopic Evidence on the Origin of Selectivity in CO2 Electrocatalytic Reduction. , 2020, ACS nano.

[13]  Bin Zhang,et al.  Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio , 2020, Science China Materials.

[14]  M. Ismail,et al.  Investigation of CO2 electrochemical reduction to syngas on Zn/Ni-based electrocatalysts using the cyclic voltammetry method , 2020 .

[15]  Jingguang G. Chen,et al.  Transition Metal Nitrides as Novel Catalyst Supports for Tuning CO/H2 Syngas Production from Electrochemical CO2 Reduction. , 2020, Angewandte Chemie.

[16]  H. Dai,et al.  Electroreduction of CO2 to formate on copper based electrocatalyst at high pressures with high energy conversion efficiency. , 2020, Journal of the American Chemical Society.

[17]  J. Cairney,et al.  Tuneable Syngas Production through CO2 Electroreduction on Cobalt-Carbon Composite Electrocatalyst. , 2020, ACS applied materials & interfaces.

[18]  Qi Shen,et al.  Syngas electrosynthesis using self-supplied CO2 from photoelectrocatalytic pollutant degradation , 2020 .

[19]  Yifu Yu,et al.  Efficient Electrosynthesis of Syngas with Tunable CO/H2 Ratios over ZnxCd1-xS-Amine Inorganic-Organic Hybrids. , 2019, Angewandte Chemie.

[20]  Jingguang G. Chen,et al.  Electrochemical Conversion of CO2 to Syngas with Controllable CO/H2 Ratios over Co and Ni Single-Atom Catalysts. , 2019, Angewandte Chemie.

[21]  Dexin Yang,et al.  Electrosynthesis of defective indium selenide with 3D structure on substrate for tunable CO2 electroreduction to syngas. , 2019, Angewandte Chemie.

[22]  Zachary D. Hood,et al.  RETRACTED ARTICLE: Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas , 2019, Nature Communications.

[23]  W. Zhou,et al.  Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO2 Electroreduction , 2019, ACS Catalysis.

[24]  E. Reisner,et al.  Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems , 2019, Nature Materials.

[25]  Jingguang G. Chen,et al.  Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts , 2019, Nature Communications.

[26]  N. Kornienko,et al.  Probing CO2 conversion chemistry on nanostructured surfaces with operando vibrational spectroscopy. , 2019, Nano letters.

[27]  Hao Ming Chen,et al.  Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO , 2019, Science.

[28]  Paul J. A. Kenis,et al.  Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption , 2019, Nature Energy.

[29]  Michael B. Ross,et al.  Electrocatalytic Rate Alignment Enhances Syngas Generation , 2019, Joule.

[30]  Zhi Wei Seh,et al.  Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques , 2018, Nature Catalysis.

[31]  Ying Wang,et al.  Simultaneous Electrosynthesis of Syngas and an Aldehyde from CO2 and an Alcohol by Molecular Electrocatalysis , 2018, ACS Applied Energy Materials.

[32]  De‐Yin Wu,et al.  Selective Electrocatalytic Mechanism of CO2 Reduction Reaction to CO on Silver Electrodes: A Unique Reaction Intermediate , 2018, The Journal of Physical Chemistry C.

[33]  Yunhui Huang,et al.  Boosting Tunable Syngas Formation via Electrochemical CO2 Reduction on Cu/In2O3 Core/Shell Nanoparticles. , 2018, ACS applied materials & interfaces.

[34]  W. Schuhmann,et al.  Optimized Ag Nanovoid Structures for Probing Electrocatalytic Carbon Dioxide Reduction Using Operando Surface-Enhanced Raman Spectroscopy. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[35]  P. Somasundaran,et al.  On the origin of the elusive first intermediate of CO2 electroreduction , 2018, Proceedings of the National Academy of Sciences.

[36]  Yueqing Zheng,et al.  Ag-doped Co3O4 catalyst derived from heterometallic MOF for syngas production by electrocatalytic reduction of CO2 in water , 2018, Journal of Solid State Chemistry.

[37]  Shengzhou Chen,et al.  Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. , 2018, ACS applied materials & interfaces.

[38]  Weiqing Zhang,et al.  Ultrathin Ag Nanowires Electrode for Electrochemical Syngas Production from Carbon Dioxide , 2018 .

[39]  Dong Ha Kim,et al.  Toward an Effective Control of the H2 to CO Ratio of Syngas through CO2 Electroreduction over Immobilized Gold Nanoparticles on Layered Titanate Nanosheets , 2018 .

[40]  Zhenhui Kang,et al.  A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas , 2017, Nature Communications.

[41]  T. Schoener,et al.  Lizards on newly created islands independently and rapidly adapt in morphology and diet , 2017, Proceedings of the National Academy of Sciences.

[42]  Wei Liu,et al.  Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. , 2017, Angewandte Chemie.

[43]  G. Zangari,et al.  Electrochemical Reduction of Carbon Dioxide to Syngas and Formate at Dendritic Copper–Indium Electrocatalysts , 2017 .

[44]  Michael B. Ross,et al.  Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2. , 2017, Journal of the American Chemical Society.

[45]  C. Berlinguette,et al.  Electrolytic CO2 Reduction in Tandem with Oxidative Organic Chemistry , 2017, ACS central science.

[46]  Jun‐Jie Zhu,et al.  Tuning Sn-Catalysis for Electrochemical Reduction of CO2 to CO via the Core/Shell Cu/SnO2 Structure. , 2017, Journal of the American Chemical Society.

[47]  M. Fontecave,et al.  Electrochemical Reduction of CO2 Catalyzed by Fe-N-C Materials: A Structure–Selectivity Study , 2017 .

[48]  Curtis P. Berlinguette,et al.  Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells , 2016 .

[49]  Z. Mi,et al.  Tunable Syngas Production from CO2 and H2 O in an Aqueous Photoelectrochemical Cell. , 2016, Angewandte Chemie.

[50]  Norbert Wagner,et al.  Transferring Electrochemical CO2 Reduction from Semi-Batch into Continuous Operation Mode Using Gas Diffusion Electrodes , 2016 .

[51]  S. Woo,et al.  Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. , 2016, Angewandte Chemie.

[52]  Joshua M. Spurgeon,et al.  Controlling the Product Syngas H2:CO Ratio through Pulsed-Bias Electrochemical Reduction of CO2 on Copper , 2016 .

[53]  M. Koper,et al.  In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile , 2016 .

[54]  Q. Fu,et al.  Selective conversion of syngas to light olefins , 2016, Science.

[55]  Paul J. A. Kenis,et al.  Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer , 2015 .

[56]  Van Nhu Nguyen,et al.  Syngas and Synfuels from H2O and CO2: Current Status , 2015 .

[57]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[58]  Manuela Bevilacqua,et al.  Recent Technological Progress in CO2 Electroreduction to Fuels and Energy Carriers in Aqueous Environments , 2015 .

[59]  B. A. Rosen,et al.  Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction , 2013, Nature Communications.

[60]  P. Kenis,et al.  Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis , 2013 .

[61]  G. Kyriacou,et al.  Acceleration of the reduction of carbon dioxide in the presence of multivalent cations , 2012 .

[62]  Thomas E. Mallouk,et al.  Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells , 2012 .

[63]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[64]  Anthony V. Cugini,et al.  CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction , 2010 .

[65]  S. Grigoriev,et al.  PEM water electrolyzers: From electrocatalysis to stack development , 2010 .

[66]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[67]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[68]  Masatoshi Osawa,et al.  Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) , 1997 .

[69]  K. Hara,et al.  Large Current Density CO2 Reduction under High Pressure Using Gas Diffusion Electrodes. , 1997 .

[70]  K. Hara,et al.  High Efficiency Electrochemical Reduction of Carbon Dioxide under High Pressure on a Gas Diffusion Electrode Containing Pt Catalysts , 1995 .

[71]  L. Schmidt,et al.  Production of Syngas by Direct Catalytic Oxidation of Methane , 1993, Science.

[72]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[73]  W. Chan,et al.  Advanced Ni tar reforming catalysts resistant to syngas impurities: Current knowledge, research gaps and future prospects , 2022, Fuel.

[74]  Paul J. A. Kenis,et al.  Effect of Cations on the Electrochemical Conversion of CO2 to CO , 2013 .

[75]  Y. Hori,et al.  Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode , 1991 .