A finite element model for predicting stresses and slip in flexible pipe armouring tendons

Abstract An eight degree-of-freedom curved beam element has been developed for the purpose of stress and slip analysis of flexible pipe armouring tendons. The fact that the tendon is forced to slide in the curvilinear plane of the supporting pipe structure is utilized to minimize the number of degrees of freedom. Differential geometry is further used in order to describe the loading and reference system of each tendon during subsequent deformation, thus avoiding a large part of congruence transformations. Numerical examples and comparison with measurements on a real flexible pipe specimen are presented. The test data and the numerical model show very good agreement.

[1]  R. H. Knapp Helical Wire Stresses in Bent Cables , 1988 .

[2]  G. E. Hay The finite displacement of thin rods , 1942 .

[3]  N. C. Huang,et al.  Finite Extension of an Elastic Strand With a Central Core , 1978 .

[4]  George A. Costello,et al.  Cylindrical Constraint of Helical Springs , 1974 .

[5]  G. Kirchhoff,et al.  Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .

[6]  George A. Costello,et al.  Torsional Stiffness of Twisted Wire Cables , 1977 .

[7]  R. H. Knapp,et al.  Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion , 1979 .

[8]  J. Lanteigne,et al.  Theoretical Estimation of the Response of Helically Armored Cables to Tension, Torsion, and Bending , 1985 .

[9]  George A. Costello,et al.  A More Exact Theory for Twisted Wire Cables , 1974 .

[10]  Nai-Chien Huang Theories of elastic slender curved rods , 1973 .

[11]  R. E. Hobbs,et al.  The bending of spiral strand and armored cables close to terminations , 1984 .

[12]  C. L. Bournazel,et al.  CALCULATION OF STRESSES AND SLIP IN STRUCTURAL LAYERS OF UNBONDED FLEXIBLE PIPES , 1987 .

[13]  S. A. Velinsky Analysis of Fiber-Core Wire Rope , 1985 .

[14]  Clifford Ambrose Truesdell,et al.  Exact theory of stress and strain in rods and shells , 1957 .

[15]  Tore H. Søreide,et al.  Collapse behavior of stiffened plates using alternative finite element formulations , 1977 .

[16]  J. Rice,et al.  Finite-element formulations for problems of large elastic-plastic deformation , 1975 .

[17]  G. Costello,et al.  Axial, Bending and Torsional Loading of a Strand With Friction , 1988 .

[18]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[19]  H. Hibbitt,et al.  A finite element formulation for problems of large strain and large displacement , 1970 .

[20]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[21]  George A. Costello,et al.  Effective Modulus of Twisted Wire Cables , 1976 .

[22]  M. Lutchansky Axial Stresses in Armor Wires of Bent Submarine Cables , 1969 .

[23]  K. Washizu,et al.  Some Considerations on a Naturally Curved and Twisted Slender Beam , 1964 .

[24]  George A. Costello,et al.  Contact Stresses in Twisted Wire Cables , 1973 .

[25]  George A. Costello Large Deflections of Helical Spring due to Bending , 1977 .

[26]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .