Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines

Here we conducted an integrative multi-omics analysis to understand how cancers harbor various types of aberrations at the genomic, epigenomic and transcriptional levels. In order to elucidate biological relevance of the aberrations and their mutual relations, we performed whole-genome sequencing, RNA-Seq, bisulfite sequencing and ChIP-Seq of 26 lung adenocarcinoma cell lines. The collected multi-omics data allowed us to associate an average of 536 coding mutations and 13,573 mutations in promoter or enhancer regions with aberrant transcriptional regulations. We detected the 385 splice site mutations and 552 chromosomal rearrangements, representative cases of which were validated to cause aberrant transcripts. Averages of 61, 217, 3687 and 3112 mutations are located in the regulatory regions which showed differential DNA methylation, H3K4me3, H3K4me1 and H3K27ac marks, respectively. We detected distinct patterns of aberrations in transcriptional regulations depending on genes. We found that the irregular histone marks were characteristic to EGFR and CDKN1A, while a large genomic deletion and hyper-DNA methylation were most frequent for CDKN2A. We also used the multi-omics data to classify the cell lines regarding their hallmarks of carcinogenesis. Our datasets should provide a valuable foundation for biological interpretations of interlaced genomic and epigenomic aberrations.

[1]  J. Minna,et al.  Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. , 2006, Journal of the National Cancer Institute.

[2]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[3]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[4]  Seungbok Lee,et al.  A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. , 2012, Genome research.

[5]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[6]  Doron Lipson,et al.  Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies , 2012, Nature Medicine.

[7]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[8]  H. Aburatani,et al.  Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer , 2007, Nature.

[9]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[10]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[11]  Steven J. M. Jones,et al.  Comprehensive molecular profiling of lung adenocarcinoma , 2014, Nature.

[12]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[13]  Daniel A. Haber,et al.  Epidermal growth factor receptor mutations in lung cancer , 2007, Nature Reviews Cancer.

[14]  Yutaka Suzuki,et al.  Identification of a lung adenocarcinoma cell line with CCDC6‐RET fusion gene and the effect of RET inhibitors in vitro and in vivo , 2013, Cancer science.

[15]  Jun Yokota,et al.  A gene‐alteration profile of human lung cancer cell lines , 2009, Human mutation.

[16]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[17]  S A Forbes,et al.  The Catalogue of Somatic Mutations in Cancer (COSMIC) , 2008, Current protocols in human genetics.

[18]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[19]  A. Iafrate,et al.  Spectrum of Oncogenic Driver Mutations in Lung Adenocarcinomas from East Asian Never Smokers , 2011, PloS one.

[20]  Washington Seattle An integrated encyclopedia of DNA elements in the human genome , 2016 .

[21]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[22]  Peter A. Jones,et al.  The fundamental role of epigenetic events in cancer , 2002, Nature Reviews Genetics.

[23]  Simon J Elsässer,et al.  New Epigenetic Drivers of Cancers , 2011, Science.

[24]  J. Minna,et al.  Identification of chromosome arm 9p as the most frequent target of homozygous deletions in lung cancer , 2005, Genes, chromosomes & cancer.

[25]  Doris Berger,et al.  International Cancer Genome Consortium , 2013, Im Focus Onkologie.

[26]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[27]  S. Sugano,et al.  Genome-wide identification and annotation of HIF-1α binding sites in two cell lines using massively parallel sequencing , 2010, The HUGO Journal.

[28]  J. Herman,et al.  Gene silencing in cancer in association with promoter hypermethylation. , 2003, The New England journal of medicine.

[29]  P. Kim,et al.  Discovery of ALK‐PTPN3 gene fusion from human non‐small cell lung carcinoma cell line using next generation RNA sequencing , 2012, Genes, chromosomes & cancer.

[30]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[31]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[32]  M. Meyerson,et al.  Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer , 2011, PloS one.

[33]  H. Varmus,et al.  Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain , 2005, PLoS medicine.

[34]  M. Ehrlich,et al.  DNA methylation in cancer: too much, but also too little , 2002, Oncogene.

[35]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[36]  Hiroyuki Aburatani,et al.  Identification of CCDC6-RET Fusion in the Human Lung Adenocarcinoma Cell Line, LC-2/ad , 2012, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[37]  Tatiana Popova,et al.  Supplementary Methods , 2012, Acta Neuropsychiatrica.

[38]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[39]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[40]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[41]  Luc Girard,et al.  A catalog of genes homozygously deleted in human lung cancer and the candidacy of PTPRD as a tumor suppressor gene , 2010, Genes, chromosomes & cancer.

[42]  Sumio Sugano,et al.  Identification and Characterization of Cancer Mutations in Japanese Lung Adenocarcinoma without Sequencing of Normal Tissue Counterparts , 2013, PloS one.

[43]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[44]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[45]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[46]  S. Sugano,et al.  Characterization of STAT6 Target Genes in Human B Cells and Lung Epithelial Cells , 2011, DNA research : an international journal for rapid publication of reports on genes and genomes.

[47]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[48]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[49]  C. Allis,et al.  Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers , 2010, Nature Reviews Cancer.

[50]  C. Roberts,et al.  SWI/SNF nucleosome remodellers and cancer , 2011, Nature Reviews Cancer.

[51]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[52]  Yasushi Totoki,et al.  KIF5B-RET fusions in lung adenocarcinoma , 2012, Nature Medicine.

[53]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[54]  E. Kavanagh,et al.  Histone onco-modifications , 2011, Oncogene.

[55]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[56]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[57]  S. Belinsky,et al.  Gene-promoter hypermethylation as a biomarker in lung cancer , 2004, Nature Reviews Cancer.

[58]  A. Feinberg,et al.  Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores , 2008, Nature Genetics.

[59]  J. Minna,et al.  Homozygous deletion scanning of the lung cancer genome at a 100‐kb resolution , 2007, Genes, chromosomes & cancer.

[60]  Emmanuel Barillot,et al.  Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization , 2010, Bioinform..

[61]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[62]  Yuki Togashi,et al.  RET, ROS1 and ALK fusions in lung cancer , 2012, Nature Medicine.

[63]  Brian H. Dunford-Shore,et al.  Somatic mutations affect key pathways in lung adenocarcinoma , 2008, Nature.

[64]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[65]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[66]  M. Meyerson,et al.  Amplification of chromosomal segment 4q12 in non-small cell lung cancer , 2009, Cancer biology & therapy.

[67]  David Sidransky,et al.  Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. , 2002, Cancer research.

[68]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[69]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[70]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[71]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[72]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[73]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.

[74]  Yoo Jin Jung,et al.  The transcriptional landscape and mutational profile of lung adenocarcinoma , 2012, Genome research.