Efficient lattice assessment for LCG and GLP parameter searches

In the present paper we show how to speed up lattice parameter searches for Monte Carlo and quasi-Monte Carlo node sets. The classical measure for such parameter searches is the spectral test which is based on a calculation of the shortest nonzero vector in a lattice. Instead of the shortest vector we apply an approximation given by the LLL algorithm for lattice basis reduction. We empirically demonstrate the speed-up and the quality loss obtained by the LLL reduction, and we present important applications for parameter selections.

[1]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[2]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[3]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[4]  Ping Yang,et al.  Simulation and Modeling , 1991 .

[5]  Karl Entacher,et al.  Parallel streams of linear random numbers in the spectral test , 1999, TOMC.

[6]  G. Marsaglia The Structure of Linear Congruential Sequences , 1972 .

[7]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[8]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[9]  A. Storjohann Faster algorithms for integer lattice basis reduction , 1996 .

[10]  P. L’Ecuyer,et al.  On selection criteria for lattice rules and other quasi-Monte Carlo point sets , 2001 .

[11]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[12]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[13]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[14]  Karl Entacher,et al.  A Collection of Selected Pseudorandom Number Generators With Linear Structures , 1997 .

[15]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[16]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[17]  Lothar Afflerbach The sub-lattice structure of linear congruential random number generators , 1986 .

[18]  Miklós Ajtai,et al.  Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..

[19]  Peter Hellekalek Don't trust parallel Monte Carlo! , 1998, Workshop on Parallel and Distributed Simulation.

[20]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[21]  Jin-Yi Cai,et al.  Some recent progress on the complexity of lattice problems , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[22]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[23]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 2 , 1981 .

[24]  W. Hörmann,et al.  Higher-Dimensional Properties of Non-Uniform Pseudo-Random Variates , 1998 .

[25]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[26]  M. Pohst Computational Algebraic Number Theory , 1993 .

[27]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[28]  Peter Zinterhof,et al.  Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .

[29]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[30]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[31]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[32]  K Entacher,et al.  Linear Congruential Generators for Parallel Monte Carlo: the Leap-Frog Case. , 1998, Monte Carlo Methods Appl..

[33]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[34]  P. L’Ecuyer,et al.  Quasi-Monte Carlo Node Sets from Linear Congruential Generators , 2000 .

[35]  Paul Coddington,et al.  Random Number Generators for Parallel Computers , 1997 .

[36]  Brian David Ripley,et al.  The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  U. Dieter,et al.  How to calculate shortest vectors in a lattice , 1975 .

[38]  Art B. Owen,et al.  Monte Carlo extension of quasi-Monte Carlo , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).