Efficient lattice assessment for LCG and GLP parameter searches
暂无分享,去创建一个
[1] R. R. Coveyou,et al. Fourier Analysis of Uniform Random Number Generators , 1967, JACM.
[2] David Thomas,et al. The Art in Computer Programming , 2001 .
[3] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[4] Ping Yang,et al. Simulation and Modeling , 1991 .
[5] Karl Entacher,et al. Parallel streams of linear random numbers in the spectral test , 1999, TOMC.
[6] G. Marsaglia. The Structure of Linear Congruential Sequences , 1972 .
[7] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[8] Pierre L'Ecuyer,et al. Uniform random number generation , 1994, Ann. Oper. Res..
[9] A. Storjohann. Faster algorithms for integer lattice basis reduction , 1996 .
[10] P. L’Ecuyer,et al. On selection criteria for lattice rules and other quasi-Monte Carlo point sets , 2001 .
[11] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[12] Pierre L'Ecuyer,et al. An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..
[13] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[14] Karl Entacher,et al. A Collection of Selected Pseudorandom Number Generators With Linear Structures , 1997 .
[15] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[16] Pierre L'Ecuyer,et al. Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..
[17] Lothar Afflerbach. The sub-lattice structure of linear congruential random number generators , 1986 .
[18] Miklós Ajtai,et al. Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..
[19] Peter Hellekalek. Don't trust parallel Monte Carlo! , 1998, Workshop on Parallel and Distributed Simulation.
[20] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[21] Jin-Yi Cai,et al. Some recent progress on the complexity of lattice problems , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).
[22] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[23] Donald E. Knuth,et al. The Art of Computer Programming, Vol. 2 , 1981 .
[24] W. Hörmann,et al. Higher-Dimensional Properties of Non-Uniform Pseudo-Random Variates , 1998 .
[25] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[26] M. Pohst. Computational Algebraic Number Theory , 1993 .
[27] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[28] Peter Zinterhof,et al. Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .
[29] Charles E. Clark,et al. Monte Carlo , 2006 .
[30] Pierre L'Ecuyer,et al. Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..
[31] U. Fincke,et al. Improved methods for calculating vectors of short length in a lattice , 1985 .
[32] K Entacher,et al. Linear Congruential Generators for Parallel Monte Carlo: the Leap-Frog Case. , 1998, Monte Carlo Methods Appl..
[33] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[34] P. L’Ecuyer,et al. Quasi-Monte Carlo Node Sets from Linear Congruential Generators , 2000 .
[35] Paul Coddington,et al. Random Number Generators for Parallel Computers , 1997 .
[36] Brian David Ripley,et al. The lattice structure of pseudo-random number generators , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[37] U. Dieter,et al. How to calculate shortest vectors in a lattice , 1975 .
[38] Art B. Owen,et al. Monte Carlo extension of quasi-Monte Carlo , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).