Atom interferometry measurement of the atom-surface van der Waals interaction

Abstract Using a nano-scale grid as a phase-shifting component, an atom interferometer has been utilized to study atom-surface van der Waals (VdW) interactions. We report phase shifts on the order of 0.2 rad, with a few percent uncertainty. We also report the velocity-dependent attenuation of atomic de Broglie wave amplitude that occurs in conjunction with the observed phase shifts. From these data we deduce the strength of the VdW potential and its dependence on the atom-surface separation. We discuss how our measurements can be used to set limits on the strength of non-Newtonian gravity at short length scales and we discuss the possibility of measuring the atom-surface interactions over a larger range of atom-surface distances. We also compare our results to several theoretical predictions for the VdW potential of Li near a variety of surfaces.

[1]  W. Johnson,et al.  Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements, and static polarizabilities for alkali-metal atoms , 1999, physics/9906044.

[2]  Noble Gas, Alkali and Alkaline Atoms Interacting with a Gold Surface , 2010, 1301.2796.

[3]  Aharon Kapitulnik,et al.  Improved constraints on non-Newtonian forces at 10 microns , 2008, 0802.2350.

[4]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[5]  S Stringari,et al.  Measurement of the temperature dependence of the Casimir-Polder force. , 2007, Physical review letters.

[6]  A. Cronin,et al.  Measurement of atomic diffraction phases induced by material gratings (5 pages) , 2005, physics/0508196.

[7]  A. Cronin,et al.  Magic ratio of window width to grating period for van der Waals potential measurements using material gratings , 2009, 0904.3289.

[8]  Variational calculations of dispersion coefficients for interactions among H, He, and Li atoms. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  The van der Waals potential between metastable atoms and solid surfaces: Novel diffraction experiments vs. theory , 2001, quant-ph/0112173.

[10]  M. Jacquey,et al.  First measurements of the index of refraction of gases for lithium atomic waves. , 2006, Physical review letters.

[11]  Glory oscillations in the index of refraction for matter waves. , 2002, Physical review letters.

[12]  H. Hoinkes The physical interaction potential of gas atoms with single-crystal surfaces, determined from gas-surface diffraction experiments , 1980 .

[13]  J. M. Norbeck,et al.  Upper and lower bounds of two‐ and three‐body dipole, quadrupole, and octupole van der Waals coefficients for hydrogen, noble gas, and alkali atom interactions , 1976 .

[14]  Peter W. Milonni,et al.  The Quantum Vacuum , 1993 .

[15]  S. Schulz,et al.  Quantum reflection of helium atom beams from a microstructured grating , 2008, 0806.4847.

[16]  Zhou,et al.  van der Waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  M. Dekieviet,et al.  Experimental observation of quantum reflection far from threshold. , 2002, Physical review letters.

[18]  S. Lamoreaux Erratum: Demonstration of the Casimir Force in the 0.6 to 6 μ m Range [Phys. Rev. Lett. 78, 5 (1997)] , 1998 .

[19]  Evgenii Mikhailovich Lifshitz,et al.  ELECTROSTATICS OF CONDUCTORS , 1984 .

[20]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[21]  Mark L. Schattenburg,et al.  Achromatic interferometric lithography for 100‐nm‐period gratings and grids , 1995 .

[22]  H. Abele The neutron. Its properties and basic interactions , 2008 .

[23]  C G Parthey,et al.  Coherent slowing of a supersonic beam with an atomic paddle. , 2007, Physical review letters.

[24]  Hammond,et al.  Index of refraction of various gases for sodium matter waves. , 1995, Physical review letters.

[25]  G. C. Hegerfeldt,et al.  Determination of Atom-Surface van der Waals Potentials from Transmission-Grating Diffraction Intensities , 1999 .

[26]  C D Hoyle,et al.  Tests of the gravitational inverse-square law below the dark-energy length scale. , 2007, Physical review letters.

[27]  Kohler,et al.  Determination of the bond length and binding energy of the helium dimer by diffraction from a transmission grating , 2000, Physical review letters.

[28]  J. Vigué,et al.  Fringe contrast in three grating Mach-Zehnder atomic interferometers , 1999 .

[29]  S. Reynaud,et al.  Casimir force between metallic mirrors , 1999, quant-ph/9907105.

[30]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[31]  Atom-wall interaction , 2005, physics/0503146.

[32]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[33]  A. Miffre,et al.  Measurement of the electric polarizability of lithium by atom interferometry , 2005, quant-ph/0506106.

[34]  David E. Pritchard,et al.  Numerical model of a multiple-grating interferometer , 1992 .

[35]  A. Cronin,et al.  Dispersive atom interferometry phase shifts due to atom-surface interactions , 2009 .

[36]  Hammond,et al.  Measurement of the electric polarizability of sodium with an atom interferometer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  Analysis of a material phase shifting element in an atom interferometer , 2005, physics/0506090.

[38]  Lithium atom interferometer using laser diffraction: description and experiments , 2005, quant-ph/0410182.

[39]  D. Herschbach,et al.  Combination Rules for van der Waals Force Constants , 1970 .

[40]  W. Kohn,et al.  Van der Waals interaction between an atom and a solid surface , 1976 .

[41]  K. J. Hughes,et al.  Measurement of the ac Stark shift with a guided matter-wave interferometer , 2007, 0709.4675.

[42]  S Vieira,et al.  The behavior and calibration of some piezoelectric ceramics used in the STM , 1986, IBM J. Res. Dev..

[43]  E. Cornell,et al.  Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with Bose-Einstein condensates , 2004, cond-mat/0403254.

[44]  David William Keith,et al.  Atom optics using microfabricated structures , 1992 .

[45]  E. A. Cornell,et al.  Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate , 2005 .

[46]  A. Miffre,et al.  Vibration-induced phase noise in Mach–Zehnder atom interferometers , 2006, quant-ph/0604022.

[47]  Using atomic diffraction of Na from material gratings to measure atom-surface interactions , 2003, physics/0312123.

[48]  S. Lamoreaux DEMONSTRATION OF THE CASIMIR FORCE IN THE 0.6 TO 6 MU M RANGE , 1997 .

[49]  A. Schirotzek,et al.  Quantum reflection from a solid surface at normal incidence. , 2004, Physical review letters.

[50]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[51]  M. W. Cole,et al.  The interaction between an atom and a surface at large separation , 1981 .