A Re-Parameterized and Improved Nonlinear Muskingum Model for Flood Routing

The nonlinear form of the Muskingum model has been widely applied to river flood routing. There are four variants of the nonlinear Muskingum model based on alternative formulations of the nonlinear storage equation. This paper proposes a new Muskingum model with an improved, seven-parameter, nonlinear storage equation. The proposed model provides more degrees of freedom in fitting observed hydraulic data than other nonlinear Muskingum models. The proper estimation of the proposed Muskingum nonlinear model’s parameters is essential to achieve accurate flood-routing predictions. This paper introduces a hybrid method for the estimation of Muskingum parameters. The parameter-estimation method combines the shuffled frog leaping algorithm (SFLA) and the Nelder-Mead simplex (NMS). The proposed Muskingum model and parameter estimation method were applied to the routing of several hydrographs. Our results indicate improved performance of the methodology described in this work when compared with those of other Muskingum models.

[1]  Jiancang Xie,et al.  Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm , 2010 .

[2]  Barry J. Adams,et al.  Optimum rehabilitation strategy of water distribution systems using the HBMO algorithm , 2008 .

[3]  Hugo A. Loáiciga,et al.  Sea-level rise and flooding in coastal riverine flood plains , 2014 .

[4]  Luca Cozzolino,et al.  An improved numerical scheme for the approximate solution of the Parabolic Wave model , 2013 .

[5]  Luna Bergere Leopold,et al.  The View from the River: , 1994 .

[6]  Lin Qiu,et al.  Estimation of Nonlinear Muskingum Model Parameter Using Differential Evolution , 2012 .

[7]  M. Mariño,et al.  Estimation of Muskingum parameter by meta-heuristic algorithms , 2013 .

[8]  Bryan W. Karney,et al.  Reservoir operation in assigning optimal multi-crop irrigation areas , 2007 .

[9]  Halil Karahan,et al.  Discussion of “Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm” by Reza Barati , 2013 .

[10]  V. Singh,et al.  Kinematic Wave Modeling in Water Resources: Surface-Water Hydrology , 1996 .

[11]  Reza Barati,et al.  Discussion of “Parameter Estimation of the Nonlinear Muskingum Model Using Parameter-Setting-Free Harmony Search” by Zong Woo Geem , 2012 .

[12]  Domenico Pianese,et al.  Stochastic approaches for sensors placement against intentional contaminations in water distribution systems , 2011 .

[13]  Reza Barati,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm , 2011 .

[14]  V. Ponce Generalized diffusion wave equation with inertial effects , 1990 .

[15]  Luca Cozzolino,et al.  Positioning, within water distribution networks, of monitoring stations aiming at an early detection of intentional contamination , 2006 .

[16]  Miguel A. Mariño,et al.  Design-Operation of Multi-Hydropower Reservoirs: HBMO Approach , 2008 .

[17]  Richard L. Church,et al.  Linear programs for nonlinear hydrologic estimation. , 1990 .

[18]  Omid Bozorg Haddad,et al.  Optimal design and operation of pumping stations using NLP-GA , 2011 .

[19]  J. Smithers,et al.  Flood routing in ungauged catchments using Muskingum methods , 2007 .

[20]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[21]  M. A. Gill Flood routing by the Muskingum method , 1978 .

[22]  Reza Barati,et al.  Application of excel solver for parameter estimation of the nonlinear Muskingum models , 2013 .

[23]  Mark H. Houck,et al.  Optimal Muskingum River Routing , 1985 .

[24]  Omid Bozorg-Haddad,et al.  Effect of Breakage Level One in Design of Water Distribution Networks , 2011 .

[25]  Luca Cozzolino,et al.  An Innovative Approach for Drainage Network Sizing , 2015 .

[26]  Zong Woo Geem,et al.  Discussion of "Parameter Estimation of the Nonlinear Muskingum Flood - Routing Model , 2014 .

[27]  Amlan Das,et al.  Parameter Estimation for Muskingum Models , 2004 .

[28]  Feng Jin-zh Improved MOPSO algorithm and its application , 2014 .

[29]  Miguel A. Mariño,et al.  Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs , 2008 .

[30]  Omid Bozorg Haddad,et al.  Optimizing multi-reservoir operation rules: an improved HBMO approach , 2010 .

[31]  M. Mariño,et al.  Long-term efficiency of water networks with demand uncertainty , 2011 .

[32]  D. A. Barry,et al.  Accuracy criteria for linearised diffusion wave flood routing , 1997 .

[33]  Luca Cozzolino,et al.  Optimal design of urban drainage networks , 2014 .

[34]  Z. Geem Parameter Estimation of the Nonlinear Muskingum Model Using Parameter-Setting-Free Harmony Search , 2011 .

[35]  Omid Bozorg Haddad,et al.  Design–operation optimisation of run-of-river power plants , 2011 .

[36]  O. Bozorg Haddad,et al.  MOPSO algorithm and its application in multipurpose multireservoir operations E. Fallah-Mehdipour, O. Bozorg Haddad and M. A. Marino , 2011 .

[37]  Wenwu Cao,et al.  Applied Numerical Methods Using MATLAB®: Yang/Applied Numerical MATLAB , 2005 .

[38]  Omid Bozorg Haddad,et al.  Site selection of raingauges using entropy methodologies , 2011 .

[39]  Luca Cozzolino,et al.  Optimal Design of Rural Drainage Networks , 2013 .

[40]  E. Andrews Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming , 1980 .

[41]  Omid Bozorg Haddad,et al.  Multireservoir optimisation in discrete and continuous domains , 2011 .

[42]  Warren. Viessman Introduction to hydrology , 1972 .

[43]  O. B. Haddad,et al.  HBMO algorithm for calibrating water distribution network of Langarud city. , 2012, Water science and technology : a journal of the International Association on Water Pollution Research.

[44]  Z. Geem Parameter Estimation for the Nonlinear Muskingum Model Using the BFGS Technique , 2006 .

[45]  M. Wolman,et al.  Magnitude and Frequency of Forces in Geomorphic Processes , 1960, The Journal of Geology.

[46]  D. Pianese,et al.  Are Extremal Hypotheses Not Consistent with Regime Alluvial Channels , 1992 .

[47]  Jaewan Yoon,et al.  Parameter Estimation of Linear and Nonlinear Muskingum Models , 1993 .

[48]  Luca Cozzolino,et al.  Analytical solutions of the linearized parabolic wave accounting for downstream boundary condition and uniform lateral inflows , 2014 .

[49]  J. Cunge,et al.  Practical aspects of computational river hydraulics , 1980 .

[50]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[51]  R. Muir-Wood,et al.  Flood risk and climate change: global and regional perspectives , 2014 .

[52]  Omid Bozorg Haddad,et al.  Optimum operation of wells in coastal aquifers , 2011 .

[53]  V. T. Chow Open-channel hydraulics , 1959 .

[54]  Elahe Fallah-Mehdipour,et al.  Effect of Utility Function Curvature of Young’s Bargaining Method on the Design of WDNs , 2011 .

[55]  Ross Woods,et al.  Improved Fitting for Three‐Parameter Muskingum Procedure , 1988 .

[56]  O. Bozorg Haddad,et al.  Real-Time Operation of Reservoir System by Genetic Programming , 2012, Water Resources Management.

[57]  M. Santillana,et al.  A numerical approach to study the properties of solutions of the diffusive wave approximation of the shallow water equations , 2010 .

[58]  Liang-Cheng Chang,et al.  Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .

[59]  Elahe Fallah-Mehdipour,et al.  Discussion of “Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm” by Halil Karahan, Gurhan Gurarslan, and Zong Woo Geem , 2014 .

[60]  Hossein M. V. Samani,et al.  Hydrologic flood routing in branched river systems via nonlinear optimization , 2004 .

[61]  Miguel A. Mariño,et al.  Optimization of non‐convex water resource problems by honey‐bee mating optimization (HBMO) algorithm , 2009 .

[62]  Luca Cozzolino,et al.  Enhancing the Efficiency of the Automatic Design of Rural Drainage Networks , 2014 .

[63]  S. Mohan,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .

[64]  D. Papamichail,et al.  Parameter Estimation Of Linear AndNonlinear Muskingum Models ForRiver Flood Routing , 1970 .

[65]  Y. Tung River flood routing by nonlinear muskingum method , 1985 .

[66]  Omid Bozorg Haddad,et al.  Dynamic penalty function as a strategy in solving water resources combinatorial optimization problems with honey-bee mating optimization (HBMO) algorithm , 2007 .

[67]  S. Easa New and improved four-parameter non-linear Muskingum model , 2014 .

[68]  Omid Bozorg Haddad,et al.  Performance of a novel hybrid algorithm in the design of water networks , 2011 .

[69]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[70]  Z. Geem,et al.  Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm , 2013 .

[71]  Luca Cozzolino,et al.  Control of DBPs in water distribution systems through optimal chlorine dosage and disinfection station allocation , 2005 .

[72]  Reza Barati,et al.  Closure to “Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm” by Reza Barati , 2013 .