Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold

Abstract Nano/microcellular polypropylene/multiwalled carbon nanotube (MWCNT) composites exhibiting higher electrical conductivity, lower electrical percolation, higher dielectric permittivity, and lower dielectric loss are reported. Nanocomposite foams with relative densities ( ρ R ) of 1.0–0.1, cell sizes of 70 nm–70 μm, and cell densities of 3 × 10 7 –2 × 10 14 cells cm −3 are achieved, providing a platform to assess the evolution of electrical properties with foaming degree. The electrical percolation threshold decreases more than fivefold, from 0.50 down to 0.09 vol.%, as the volume expansion increases through foaming. The electrical conductivity increases up to two orders of magnitude in the nanocellular nanocomposites (1.0 >  ρ R >  ∼0.6). In the proper microcellular range ( ρ R  ≈ 0.45), the introduction of cellular structure decreases the dielectric loss up to five orders of magnitude, while the decrease in dielectric permittivity is only 2–4 times. Thus, microcellular composites containing only ∼0.34 vol.% MWCNT present a frequency-independent high dielectric permittivity (∼30) and very low dielectric loss (∼0.06). The improvements in such properties are correlated to the microstructural evolution caused by foaming action (biaxial stretching) and volume exclusion. High conductivity foams have applications in electromagnetic shielding and high dielectric foams can be developed for charge storage applications.

[1]  P. Pötschke,et al.  A successful approach to disperse MWCNTs in polyethylene by melt mixing using polyethylene glycol as additive , 2012 .

[2]  Zhiqun Lin,et al.  Multifunctional PMMA-Ceramic composites as structural dielectrics , 2010 .

[3]  J. Calame Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications , 2006 .

[4]  Chul B. Park,et al.  Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams , 2013 .

[5]  Boris I Shklovskii,et al.  Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold , 1976 .

[6]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[7]  P. Pötschke,et al.  Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix , 2008 .

[8]  Darren J. Martin,et al.  Polyethylene multiwalled carbon nanotube composites , 2005 .

[9]  Yang Shen,et al.  High Dielectric Performance of Polymer Composite Films Induced by a Percolating Interparticle Barrier Layer , 2007 .

[10]  Rémi Jullien,et al.  Scaling of Kinetically Growing Clusters , 1983 .

[11]  Canan Dagdeviren,et al.  Processing Conditions and Aging Effect on the Morphology of PZT Electrospun Nanofibers, and Dielectric Properties of the Resulting 3–3 PZT/Polymer Composite , 2009 .

[12]  Av Andriy Kyrylyuk,et al.  The incorporation of single-walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold , 2009 .

[13]  Jiaqi Huang,et al.  The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. , 2013, Small.

[14]  C. Zannoni,et al.  Modeling Polymer Dielectric/Pentacene Interfaces: On the Role of Electrostatic Energy Disorder on Charge Carrier Mobility , 2009 .

[15]  U. Steiner,et al.  Hierarchical Pattern Formation in Thin Polymer Films Using an Electric Field and Vapor Sorption , 2005 .

[16]  Thomas Apperley,et al.  Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites , 2012 .

[17]  Zhong-Zhen Yu,et al.  Tough graphene-polymer microcellular foams for electromagnetic interference shielding. , 2011, ACS applied materials & interfaces.

[18]  Chul B. Park,et al.  Through-plane electrical conductivity of injection-molded polypropylene/carbon-fiber composite foams , 2013 .

[19]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[20]  Yuanhua Lin,et al.  Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density , 2009 .

[21]  Z. Dang,et al.  Giant Dielectric Permittivity Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction , 2011 .

[22]  P. Watts,et al.  Non-linear current–voltage characteristics of electrically conducting carbon nanotube–polystyrene composites , 2002 .

[23]  A. Aharony,et al.  Low-concentration series in general dimension , 1990 .

[24]  J. Velasco,et al.  Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams , 2011 .

[25]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[26]  Yongsheng Chen,et al.  Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites , 2007 .

[27]  Simon S. Park,et al.  Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate , 2011 .

[28]  C. Macosko,et al.  Nanodispersions of carbon nanofiber for polyurethane foaming , 2010 .

[29]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[30]  A. Hrymak,et al.  Improved through‐plane electrical conductivity in a carbon‐filled thermoplastic via foaming , 2008 .

[31]  Munson-McGee,et al.  Estimation of the critical concentration in an anisotropic percolation network. , 1991, Physical review. B, Condensed matter.

[32]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[33]  Petra Pötschke,et al.  Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene , 2004 .

[34]  W. Heiss,et al.  Fitting the DC conductivity and first order AC conductivity results for continuum percolation media, using percolation theory and a single phenomenological equation , 2003 .

[35]  I. Huynen,et al.  A convenient route for the dispersion of carbon nanotubes in polymers: application to the preparation of Electromagnetic Interference (EMI) absorbers , 2012 .

[36]  Petra Pötschke,et al.  Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites , 2003 .

[37]  X. Bian,et al.  Ultralight conductive carbon-nanotube-polymer composite. , 2007, Small.

[38]  Cees Dekker,et al.  Electron–electron correlations in carbon nanotubes , 1998, Nature.

[39]  Simon S. Park,et al.  The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites , 2012 .

[40]  R. M. Mehra,et al.  Electrical, dielectric, and electromagnetic shielding properties of polypropylene‐graphite composites , 2010 .

[41]  J. Fischer,et al.  Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites , 2005 .

[42]  Yang Shen,et al.  Carbon Nanotube Array/Polymer Core/Shell Structured Composites with High Dielectric Permittivity, Low Dielectric Loss, and Large Energy Density , 2011, Advanced materials.

[43]  Masanori Ozaki,et al.  Electric Field Tuning of the Stop Band in a Liquid‐Crystal‐Infiltrated Polymer Inverse Opal , 2002 .

[44]  T. Kotaka,et al.  Biaxial Flow-Induced Alignment of Silicate Layers in Polypropylene/Clay Nanocomposite Foam , 2001 .

[45]  C. Jérôme,et al.  The influence of foam morphology of multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites on electrical conductivity , 2013 .

[46]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[47]  M. Sumita,et al.  Percolation Concept: Polymer-Filler Gel Formation, Electrical Conductivity and Dynamic Electrical Properties of Carbon-Black-Filled Rubbers , 1996 .

[48]  Z. Dang,et al.  Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites , 2009 .

[49]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[50]  Mool C. Gupta,et al.  Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. , 2005, Nano letters.

[51]  L. Bednarz,et al.  Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction , 2008 .

[52]  N. Koratkar,et al.  Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field , 2008 .

[53]  J. Tour,et al.  Low-loss, high-permittivity composites made from graphene nanoribbons. , 2011, ACS applied materials & interfaces.

[54]  Petra Pötschke,et al.  Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts , 2008 .

[55]  I. Huynen,et al.  Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials , 2010 .

[56]  M. Iwamoto,et al.  Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element , 2006 .

[57]  Jianbin Xu,et al.  Controlling of the surface energy of the gate dielectric in organic field-effect transistors by polymer blend , 2009 .

[58]  Lobb,et al.  Percolative conduction in three dimensions. , 1990, Physical review. B, Condensed matter.

[59]  H. Garmestani,et al.  Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing , 2003 .