An efficient upper bound of the rotation distance of binary trees

A polynomial time algorithm is developed for computing an upper bound for the rotation distance of binary trees and equivalently for the diagonal-flip distance of convex polygons triangulations. Ordinal tools are used.

[1]  Frank Ruskey,et al.  Generating Binary Trees Lexicographically , 1977, SIAM J. Comput..

[2]  Erkki Mäkinen On the Rotation Distance of Binary Trees , 1988, Inf. Process. Lett..

[3]  Fabrizio Luccio,et al.  On the Upper Bound on the Rotation Distance of Binary Trees , 1989, Inf. Process. Lett..

[4]  R. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[5]  L. Moser,et al.  Triangular Dissections of N-Gons , 1963, Canadian Mathematical Bulletin.

[6]  D. Aldous Triangulating the Circle, at Random , 1994 .

[7]  Thomas Ottmann,et al.  The Edge-flipping Distance of Triangulations , 1996, J. Univers. Comput. Sci..

[8]  Marc Noy,et al.  Flipping Edges in Triangulations , 1999, Discret. Comput. Geom..

[9]  Ming Li,et al.  Better Approximation of Diagonal-Flip Transformation and Rotation Transformation , 1998, COCOON.

[10]  Jean Marcel Pallo,et al.  The number of coverings in four catalan lattices , 1996, Int. J. Comput. Math..

[11]  Thomas M. Cover,et al.  Open Problems in Communication and Computation , 2011, Springer New York.

[12]  Derick Wood,et al.  A Note on Some Tree Similarity Measures , 1982, Inf. Process. Lett..

[13]  Frank Harary,et al.  On the cell-growth problem for arbitrary polygons , 1975, Discret. Math..

[14]  Frank Ruskey On the Average Shape of Binary Trees , 1980, SIAM J. Matrix Anal. Appl..

[15]  Jean Marcel Pallo,et al.  Enumerating, Ranking and Unranking Binary Trees , 1986, Comput. J..

[16]  Jean Marcel Pallo,et al.  On the Rotation Distance in the Lattice of Binary Trees , 1987, Inf. Process. Lett..

[17]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .