Objectivity Over Objects: A Case Study In Theory Formation

Etude de la methodologie contemporaine de la theorie des ensembles, dans le contexte de la philosophie des sciences. Examinant le concept de verite a l'oeuvre dans l'axiomatique mathematique, l'A. defend la primaute de l'objectivite dans le domaine de la formation de la theorie et dans le domaine ontologique.

[1]  H. Putnam What is mathematical truth , 1975 .

[2]  N. Goodman Fact, Fiction, and Forecast , 1955 .

[3]  Daniel N. Osherson,et al.  Elements of Scientific Inquiry , 1998 .

[4]  Charles Parsons,et al.  What is the Iterative Conception of Set , 1977 .

[5]  G. Boolos,et al.  The Iterative Conception of Set , 1971 .

[6]  John R. Steel,et al.  The extent of scales in L(R) , 1983 .

[7]  Charles Parsons,et al.  Reason and Intuition* , 2000, Synthese.

[8]  John R. Steel,et al.  A proof of projective determinacy , 1989 .

[9]  Kai Hauser Is Cantor's Continuum Problem Inherently Vague? , 2002 .

[10]  Edmund Husserl,et al.  Ideen zu einer reinen Phänomenologie und Phänomenologischen Philosophie, Erstes Buch, Allgemeine Einführung in die Reine Phänomenologie , 1951 .

[11]  K. McAloon,et al.  Consistency results about ordinal definability , 1971 .

[12]  Willard Van Orman Quine,et al.  From a Logical Point of View , 1955 .

[13]  Thomas Jech,et al.  Singular Cardinals and the PCF Theory , 1995, Bulletin of Symbolic Logic.

[14]  W. Hugh Woodin,et al.  The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal , 1999 .

[15]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[16]  Ronald B. Jensen,et al.  Inner Models and Large Cardinals , 1995, Bulletin of Symbolic Logic.

[17]  Stevo Todorcevic,et al.  Partition Problems In Topology , 1989 .

[18]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Woodin,et al.  Supercompact cardinals, sets of reals, and weakly homogeneous trees. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Kanamori The Higher Infinite , 1994 .

[21]  Edmund Husserl,et al.  Formale und transzendentale Logik , 1977 .

[22]  Hao Wang,et al.  Reflections on Kurt Gödel , 1987 .

[23]  Charles D. Parsons,et al.  Platonism and Mathematical Intuition in Kurt Gödel's Thought , 1995, Bulletin of Symbolic Logic.

[24]  Gregory H. Moore Zermelo’s Axiom of Choice , 1982 .

[25]  Chaïm Perelman Les paradoxes de la logique , 1936 .

[26]  I. Mackenzie The Semantic Conception of Truth , 1997 .

[27]  W. Quine,et al.  Philosophy of mathematics: Truth by convention , 1984 .

[28]  Alexander S. Kechris The Axiom of Determinancy Implies Dependent Choices in L(R) , 1984, J. Symb. Log..

[29]  E. Husserl Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie , 1976 .

[30]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[31]  Y. Moschovakis Descriptive Set Theory , 1980 .

[32]  Akihiro Kanamori,et al.  The evolution of large cardinal axioms in set theory , 1978 .

[33]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[34]  Hao Wang,et al.  From Mathematics to Philosophy. , 1975 .

[35]  Edmund Husserl,et al.  Nachwort zu meinen "Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie" , 1930 .

[36]  Saharon Shelah,et al.  Can you take Solovay’s inaccessible away? , 1984 .

[37]  Penelope Maddy Does V Equal L? , 1993, J. Symb. Log..

[38]  Carl G. Hempel,et al.  I.—STUDIES IN THE LOGIC OF CONFIRMATION (II.) , 1945 .

[39]  S. Thomas CARDINAL ARITHMETIC (Oxford Logic Guides 29) , 1997 .

[40]  Edmund Husserl,et al.  Cartesianische Meditationen ; die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie : eine Einleitung in die phänomenologische Philosophie : Text nach Husserliana VI , 1992 .

[41]  Karl R. Popper The Logic of Scientific Discovery. , 1977 .

[42]  Solomon Feferman,et al.  DOES MATHEMATICS NEED NEW AXIOMS , 1999 .

[43]  Edmund Husserl,et al.  Logische Untersuchungen. Erster Theil: Prolegomena zur reinen Logik , 2022 .

[44]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Azriel Levy Basic set theory , 1979 .

[46]  Edmund Husserl,et al.  Logische Untersuchungen, Zweiter Band: Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, Text der 1. und der 2 , 1986 .

[47]  A. Levy,et al.  Measurable cardinals and the continuum hypothesis , 1967 .

[48]  M. Kendall,et al.  The Logic of Scientific Discovery. , 1959 .

[49]  Akihiro Kanamori,et al.  Strong axioms of infinity and elementary embeddings , 1978 .

[50]  Penelope Maddy,et al.  Believing the axioms. I , 1988, Journal of Symbolic Logic.