Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system.

We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a selection rule for the "more stable" macroscopic steady state. The analysis is akin to the Maxwell construction. Based on the chemical master equation approach, it is shown that, except at a critical point, bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable. Onsager's Gaussian fluctuation theory applies to the unique macroscopic steady state. With an initial state in the basin of attraction of the "less stable" steady state, the deterministic dynamics obtained by the law of mass action is a metastable phenomenon. Stability and robustness in cell biology are emergent stochastic concepts.

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  Lars Onsager,et al.  Fluctuations and Irreversible Processes , 1953 .

[3]  Martin J. Klein,et al.  Principle of Detailed Balance , 1955 .

[4]  Peter G. Bergmann,et al.  New Approach to Nonequilibrium Processes , 1955 .

[5]  Melvin Lax,et al.  Fluctuations from the Nonequilibrium Steady State , 1960 .

[6]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[7]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[8]  René Lefever,et al.  Comment on the kinetic potential and the maxwell construction in non-equilibrium chemical phase transitions , 1977 .

[9]  J. Keizer Maxwell-type constructions for multiple nonequilibrium steady states. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Joel Keizer,et al.  Nonequilibrium thermodynamics and the stability of states far from equilibrium , 1979 .

[11]  Grégoire Nicolis,et al.  EFFECT OF FLUCTUATIONS ON BIFURCATION PHENOMENA , 1979 .

[12]  Peter Hänggi,et al.  Bistable systems: Master equation versus Fokker-Planck modeling , 1984 .

[13]  Werner Horsthemke,et al.  Fluctuations and sensitivity in nonequilibrium systems , 1984 .

[14]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[15]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[16]  John E. Pearson,et al.  Microscopic simulation of chemical bistability in homogeneous systems , 1996 .

[17]  B. Derrida AN EXACTLY SOLUBLE NON-EQUILIBRIUM SYSTEM : THE ASYMMETRIC SIMPLE EXCLUSION PROCESS , 1998 .

[18]  J. R. Dorfman,et al.  An introduction to chaos in nonequilibrium statistical mechanics , 1999 .

[19]  M. Ehrenberg,et al.  Fluctuations and quality of control in biological cells: zero-order ultrasensitivity reinvestigated. , 2000, Biophysical journal.

[20]  P. Wolynes,et al.  The middle way. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[22]  Hong Qian Mathematical formalism for isothermal linear irreversibility , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[24]  Jitao Wang Nonequilibrium Nondissipative Thermodynamics , 2002 .

[25]  Johan Paulsson,et al.  Near-critical phenomena in intracellular metabolite pools. , 2003, Biophysical journal.

[26]  M. Qian,et al.  Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems , 2004 .

[27]  Minping Qian,et al.  Mathematical Theory of Nonequilibrium Steady States , 2004 .

[28]  Hong Qian,et al.  Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch. , 2005, Physical review letters.

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[31]  D. Thouless,et al.  Structure of stochastic dynamics near fixed points. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Johan Paulsson,et al.  Models of stochastic gene expression , 2005 .

[33]  Hong Qian,et al.  Phosphorylation energy hypothesis: open chemical systems and their biological functions. , 2007, Annual review of physical chemistry.

[34]  H. Qian,et al.  A Quasistationary Analysis of a Stochastic Chemical Reaction: Keizer’s Paradox , 2007, Bulletin of mathematical biology.

[35]  Gaussian noise and time-reversal symmetry in nonequilibrium Langevin models. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  P. Ao Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics. , 2008, Communications in theoretical physics.

[37]  Hong Qian,et al.  Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited , 2009, Journal of The Royal Society Interface.

[38]  E. Karsenti Self-organization in cell biology: a brief history , 2008, Nature Reviews Molecular Cell Biology.

[39]  Hong Qian,et al.  Chemical Biophysics: Quantitative Analysis of Cellular Systems , 2008 .

[40]  Pol D. Spanos,et al.  Computational Stochastic Mechanics , 2011 .