In Vivo Time-Lapse Imaging and Serial Section Electron Microscopy Reveal Developmental Synaptic Rearrangements

[1]  B. Cragg,et al.  The development of synapses in the visual system of the cat , 1975, The Journal of comparative neurology.

[2]  D. Purves,et al.  Elimination of synapses in the developing nervous system. , 1980, Science.

[3]  M. Blue,et al.  The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis , 1983, Journal of neurocytology.

[4]  C. Shatz,et al.  Prenatal development of individual retinogeniculate axons during the period of segregation , 1984, Nature.

[5]  C. Shatz,et al.  Prenatal development of functional connections in the cat's retinogeniculate pathway , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[7]  D. O'Leary,et al.  Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  P. Rakić,et al.  Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. , 1989, Brain research. Developmental brain research.

[9]  R. McCart,et al.  Synaptogenesis in the stratum griseum superficiale of the rat superior colliculus , 1989, Synapse.

[10]  J. E. Vaughn,et al.  Fine structure of synaptogenesis in the vertebrate central nervous system. , 1989, Synapse.

[11]  James E. Vaughn,et al.  Review: Fine structure of synaptogenesis in the vertebrate central nervous system , 1989 .

[12]  M. Constantine-Paton,et al.  Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. , 1990, Annual review of neuroscience.

[13]  S. McLoon,et al.  Elimination of the transient ipsilateral retinotectal projection is not solely achieved by cell death in the developing chick , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  C. Shatz,et al.  Synapses formed by identified retinogeniculate axons during the segregation of eye input , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  M P Stryker,et al.  Rapid remodeling of axonal arbors in the visual cortex. , 1993, Science.

[16]  D. Stephan,et al.  Enzyme Handbook , 1994, Springer Berlin Heidelberg.

[17]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[18]  P. Huttenlocher,et al.  Regional differences in synaptogenesis in human cerebral cortex , 1997, The Journal of comparative neurology.

[19]  J. Lichtman,et al.  Alterations in Synaptic Strength Preceding Axon Withdrawal , 1997, Science.

[20]  G. Shepherd,et al.  Three-Dimensional Structure and Composition of CA3→CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization , 1998, The Journal of Neuroscience.

[21]  H. Cline,et al.  Stabilization of dendritic arbor structure in vivo by CaMKII. , 1998, Science.

[22]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[23]  Hollis T. Cline,et al.  Glutamate Receptor Activity Is Required for Normal Development of Tectal Cell Dendrites In Vivo , 1998, The Journal of Neuroscience.

[24]  J. Fiala,et al.  Synaptogenesis Via Dendritic Filopodia in Developing Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[25]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[26]  J. Sanes,et al.  Development of the vertebrate neuromuscular junction. , 1999, Annual review of neuroscience.

[27]  NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. , 1999, Journal of neurobiology.

[28]  K. Harris,et al.  Slices Have More Synapses than Perfusion-Fixed Hippocampus from both Young and Mature Rats , 1999, The Journal of Neuroscience.

[29]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[30]  W. Regehr,et al.  Developmental Remodeling of the Retinogeniculate Synapse , 2000, Neuron.

[31]  H. Cline,et al.  Dendritic arbor development and synaptogenesis , 2001, Current Opinion in Neurobiology.

[32]  Berta Alsina,et al.  Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF , 2001, Nature Neuroscience.

[33]  Christian Lohmann,et al.  Transmitter-evoked local calcium release stabilizes developing dendrites , 2002, Nature.

[34]  R. Wong,et al.  Activity-dependent regulation of dendritic growth and patterning , 2002, Nature Reviews Neuroscience.

[35]  D. Chklovskii,et al.  Geometry and Structural Plasticity of Synaptic Connectivity , 2002, Neuron.

[36]  E. S. Ruthazer,et al.  Control of Axon Branch Dynamics by Correlated Activity in Vivo , 2003, Science.

[37]  Stephen J. Smith,et al.  Neural activity and the dynamics of central nervous system development , 2004, Nature Neuroscience.

[38]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[39]  Silvio O Rizzoli,et al.  The Structural Organization of the Readily Releasable Pool of Synaptic Vesicles , 2004, Science.

[40]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[41]  F. Lo,et al.  Behavioral/systems/cognitive Nmda Receptor-dependent Regulation of Axonal and Dendritic Branching , 2022 .

[42]  L. Luo,et al.  Axon retraction and degeneration in development and disease. , 2005, Annual review of neuroscience.

[43]  Kurt Haas,et al.  AMPA receptors regulate experience-dependent dendritic arbor growth in vivo , 2006, Proceedings of the National Academy of Sciences.

[44]  B. Matthews,et al.  BDNF increases synapse density in dendrites of developing tectal neurons in vivo , 2006, Development.

[45]  Jianli Li,et al.  Stabilization of Axon Branch Dynamics by Synaptic Maturation , 2006, The Journal of Neuroscience.

[46]  Bryan M. Hooks,et al.  Distinct Roles for Spontaneous and Visual Activity in Remodeling of the Retinogeniculate Synapse , 2006, Neuron.

[47]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[48]  E. Rubel,et al.  The Level and Integrity of Synaptic Input Regulates Dendrite Structure , 2006, The Journal of Neuroscience.

[49]  H. Cline,et al.  In vivo single-cell electroporation for transfer of DNA and macromolecules , 2006, Nature Protocols.

[50]  Martin P Meyer,et al.  Evidence from In Vivo Imaging That Synaptogenesis Guides the Growth and Branching of Axonal Arbors by Two Distinct Mechanisms , 2006, The Journal of Neuroscience.

[51]  A. Huberman Mechanisms of eye-specific visual circuit development , 2007, Current Opinion in Neurobiology.

[52]  Kevan A. C. Martin,et al.  Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons , 2007, The Journal of Neuroscience.

[53]  H. Cline,et al.  Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection. , 2007, Journal of neurophysiology.

[54]  D. Corey,et al.  Dynamic aspects of CNS synapse formation. , 2007, Annual review of neuroscience.

[55]  Mark Ellisman,et al.  Synapse formation on neurons born in the adult hippocampus , 2007, Nature Neuroscience.

[56]  Jana Hartmann,et al.  Homosynaptic Long-Term Synaptic Potentiation of the “Winner” Climbing Fiber Synapse in Developing Purkinje Cells , 2008, The Journal of Neuroscience.

[57]  Hao Wang,et al.  A Critical Window for Experience-Dependent Plasticity at Whisker Sensory Relay Synapse in the Thalamus , 2008, The Journal of Neuroscience.

[58]  H. Cline,et al.  The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis , 2008, The Journal of physiology.

[59]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[60]  Bryan M. Hooks,et al.  Vision Triggers an Experience-Dependent Sensitive Period at the Retinogeniculate Synapse , 2008, The Journal of Neuroscience.

[61]  M. Merzenich,et al.  Plasticity in primary somatosensory cortex resulting from environmentally enriched stimulation and sensory discrimination training. , 2008, Biological research.

[62]  Ju Lu,et al.  Correction: The Interscutularis Muscle Connectome , 2009, PLoS Biology.

[63]  Ju Lu,et al.  The Interscutularis Muscle Connectome , 2009, PLoS biology.

[64]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[65]  E. S. Ruthazer,et al.  Learning to see: patterned visual activity and the development of visual function , 2010, Trends in Neurosciences.

[66]  L. Luo,et al.  Diversity and Wiring Variability of Olfactory Local Interneurons in the Drosophila Antennal Lobe , 2010, Nature Neuroscience.

[67]  Jianli Li,et al.  Visual deprivation increases accumulation of dense core vesicles in developing optic tectal synapses in Xenopus laevis , 2010, The Journal of comparative neurology.

[68]  Blake A. Richards,et al.  GABAergic circuits control stimulus-instructed receptive field development in the optic tectum , 2010, Nature Neuroscience.

[69]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[70]  Jianli Li,et al.  Membrane Targeted Horseradish Peroxidase as a Marker for Correlative Fluorescence and Electron Microscopy Studies , 2009, Front. Neural Circuits.

[71]  A. Nikolakopoulou,et al.  Synaptic maturation of the Xenopus retinotectal system: Effects of brain‐derived neurotrophic factor on synapse ultrastructure , 2010, The Journal of comparative neurology.

[72]  E. S. Ruthazer,et al.  In vivo time-lapse imaging of neuronal development in Xenopus. , 2013, Cold Spring Harbor protocols.

[73]  T. Serwold,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2022 .