On the number of sparse paving matroids

Let sp(n) be the number of sparse paving matroids on the ground set {1,...,n}. We prove that loglogsp(n)=n-(3/2)logn+O(loglogn), and we conjecture that the same equality applies to the number of all matroids on the set {1,...,n}.

[1]  M. J Piff,et al.  An upper bound for the number of matroids , 1973 .

[2]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[3]  Dillon Mayhew,et al.  On the asymptotic proportion of connected matroids , 2011, Eur. J. Comb..

[4]  Donald E. Knuth,et al.  The Asymptotic Number of Geometries , 1974, J. Comb. Theory A.