Atomic force microscopy of transformation toughening in ceria-stabilized zirconia
暂无分享,去创建一个
[1] H. Tsubakino,et al. Surface relief associated with isothermal martensite in zirconia-3-mol%-yttria ceramics observed by atomic force microscopy , 2004 .
[2] Patrick M. Kelly,et al. Transformation Toughening in Zirconia‐Containing Ceramics , 2004 .
[3] J. Chevalier,et al. Subcritical Crack Propagation in 3Y‐TZP Ceramics: Static and Cyclic Fatigue , 2004 .
[4] J. Chevalier,et al. Martensitic relief observation by atomic force microscopy in yttria-stabilized zirconia , 2003, 1710.04442.
[5] X. Wang,et al. The study of martensitic transformation and nanoscale surface relief in zirconia , 2002 .
[6] C. Hubbard,et al. Transformation behavior in Al2O3ZrO2 ceramic composites , 1995 .
[7] L. Truskinovsky,et al. Shear induced transformation toughening in ceramics , 1994 .
[8] D. Marshall,et al. Transformation Zone Shape Effects on Crack Shielding in Ceria‐Partially‐Stabilized Zirconia (Ce‐TZP)–Alumina Composites , 1992 .
[9] I. Chen. Model of Transformation Toughening in Brittle Materials , 1991 .
[10] D. Shetty,et al. Role of autocatalytic transformation in zone shape and toughening of CERIA-tetragonal-zirconia-alumina (CE-TZP/Al2O3) composites. (Reannouncement with new availability information) , 1991 .
[11] M. Hayakawa,et al. Crystallographic analysis of the monoclinic herringbone structure in an arc-melted ZrO2-2 mol% Y2O3 alloy , 1990 .
[12] M. Hayakawa,et al. Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.%Y2O3—I. Experimental observations , 1989 .
[13] D. Shetty,et al. Transformation Zone Shape, Size, and Crack‐Growth‐Resistance [R‐Curve] Behavior of Ceria‐Partially‐Stabilized Zirconia Polycrystals , 1989 .
[14] D. J. Green. Transformation Toughening Of Ceramics , 1988 .
[15] I. Chen,et al. Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: II, Pseudoelasticity and Shape Memory Effect , 1988 .
[16] I-Wei Chen,et al. Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis , 1988 .
[17] L. Rose. The mechanics of transformation toughening , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[18] R. M. Cannon,et al. Toughening of brittle solids by martensitic transformations , 1986 .
[19] Frederick F. Lange,et al. Degradation During Aging of Transformation‐Toughened ZrO2‐Y2O3 Materials at 250°C , 1986 .
[20] J. Lankford. Plastic Deformation of Partially Stabilized Zirconia , 1983 .
[21] Anthony G. Evans,et al. Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .
[22] K. Kobayashi,et al. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing , 1981 .
[23] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[24] J. Chevalier,et al. Slow-crack-growth behavior of zirconia-toughened alumina ceramics processed by different methods , 2003 .
[25] L. R. Francis Rose,et al. The martensitic transformation in ceramics — its role in transformation toughening , 2002 .
[26] Michael V. Swain,et al. Metastability of the martensitic transformation in a 12 mol% ceria-zirconia alloy; I, deformation and fracture observations , 1989 .
[27] F. Lange. Transformation toughening , 1982 .
[28] F. Lange. Transformation toughening , 1982 .
[29] E. C. Subbarao,et al. Advances in Ceramics , 1981 .
[30] R. T. Pascoe,et al. Ceramic steel? , 1975, Nature.
[31] J. Mackenzie,et al. The crystallography of martensite transformations II , 1954 .