Atomic force microscopy of transformation toughening in ceria-stabilized zirconia

[1]  H. Tsubakino,et al.  Surface relief associated with isothermal martensite in zirconia-3-mol%-yttria ceramics observed by atomic force microscopy , 2004 .

[2]  Patrick M. Kelly,et al.  Transformation Toughening in Zirconia‐Containing Ceramics , 2004 .

[3]  J. Chevalier,et al.  Subcritical Crack Propagation in 3Y‐TZP Ceramics: Static and Cyclic Fatigue , 2004 .

[4]  J. Chevalier,et al.  Martensitic relief observation by atomic force microscopy in yttria-stabilized zirconia , 2003, 1710.04442.

[5]  X. Wang,et al.  The study of martensitic transformation and nanoscale surface relief in zirconia , 2002 .

[6]  C. Hubbard,et al.  Transformation behavior in Al2O3ZrO2 ceramic composites , 1995 .

[7]  L. Truskinovsky,et al.  Shear induced transformation toughening in ceramics , 1994 .

[8]  D. Marshall,et al.  Transformation Zone Shape Effects on Crack Shielding in Ceria‐Partially‐Stabilized Zirconia (Ce‐TZP)–Alumina Composites , 1992 .

[9]  I. Chen Model of Transformation Toughening in Brittle Materials , 1991 .

[10]  D. Shetty,et al.  Role of autocatalytic transformation in zone shape and toughening of CERIA-tetragonal-zirconia-alumina (CE-TZP/Al2O3) composites. (Reannouncement with new availability information) , 1991 .

[11]  M. Hayakawa,et al.  Crystallographic analysis of the monoclinic herringbone structure in an arc-melted ZrO2-2 mol% Y2O3 alloy , 1990 .

[12]  M. Hayakawa,et al.  Structural study on the tetragonal to monoclinic transformation in arc-melted ZrO2-2mol.%Y2O3—I. Experimental observations , 1989 .

[13]  D. Shetty,et al.  Transformation Zone Shape, Size, and Crack‐Growth‐Resistance [R‐Curve] Behavior of Ceria‐Partially‐Stabilized Zirconia Polycrystals , 1989 .

[14]  D. J. Green Transformation Toughening Of Ceramics , 1988 .

[15]  I. Chen,et al.  Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: II, Pseudoelasticity and Shape Memory Effect , 1988 .

[16]  I-Wei Chen,et al.  Transformation Plasticity of CeO2‐Stabilized Tetragonal Zirconia Polycrystals: I, Stress Assistance and Autocatalysis , 1988 .

[17]  L. Rose The mechanics of transformation toughening , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  R. M. Cannon,et al.  Toughening of brittle solids by martensitic transformations , 1986 .

[19]  Frederick F. Lange,et al.  Degradation During Aging of Transformation‐Toughened ZrO2‐Y2O3 Materials at 250°C , 1986 .

[20]  J. Lankford Plastic Deformation of Partially Stabilized Zirconia , 1983 .

[21]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[22]  K. Kobayashi,et al.  Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing , 1981 .

[23]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  J. Chevalier,et al.  Slow-crack-growth behavior of zirconia-toughened alumina ceramics processed by different methods , 2003 .

[25]  L. R. Francis Rose,et al.  The martensitic transformation in ceramics — its role in transformation toughening , 2002 .

[26]  Michael V. Swain,et al.  Metastability of the martensitic transformation in a 12 mol% ceria-zirconia alloy; I, deformation and fracture observations , 1989 .

[27]  F. Lange Transformation toughening , 1982 .

[28]  F. Lange Transformation toughening , 1982 .

[29]  E. C. Subbarao,et al.  Advances in Ceramics , 1981 .

[30]  R. T. Pascoe,et al.  Ceramic steel? , 1975, Nature.

[31]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .