Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry

Non-invasive magnetic field sensing using optically - detected magnetic resonance of nitrogen-vacancy (NV) centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, Pb and Nb, and unconventional, LuNi$_2$B$_2$C, Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$, Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$, and CaKFe$_4$As$_4$, superconductors, with diffraction - limited spatial resolution using variable - temperature confocal system. Magnetic induction profiles across the crystal edges were measured in zero-field-cooled (ZFC) and field-cooled (FC) conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, $T_c$, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above $T_c$. Substantial conventional Meissner expulsion is found in LuNi$_2$B$_2$C, paramagnetic Meissner effect (PME) is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found. Our measurements of the spatial distribution of magnetic induction provide insight into microscopic physics of the Meissner effect.

[1]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[2]  J. Clem Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire , 2011, 1102.3678.

[3]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[4]  E. Zeldov,et al.  Geometrical barriers in type II superconductors , 1994 .

[5]  R. Prozorov Equilibrium topology of the intermediate state in type-I superconductors of different shapes. , 2006, Physical review letters.

[6]  D. D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005 .

[7]  T. Lograsso,et al.  Comprehensive scenario for single-crystal growth and doping dependence of resistivity and anisotropic upper critical fields in (Ba1-xKx)Fe2As2 (0.22 <= X <= 1) , 2014, 1403.0227.

[8]  Bock,et al.  Paramagnetic Meissner effect in high-temperature superconductors. , 1993, Physical review. B, Condensed matter.

[9]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[10]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[11]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[12]  E Neu,et al.  Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. , 2015, Nature nanotechnology.

[13]  R. Prozorov,et al.  London penetration depth in iron-based superconductors , 2011, 1107.0675.

[14]  He,et al.  Paramagnetic Meissner effect in high-temperature superconductors: Experiments and interpretation. , 1996, Physical review. B, Condensed matter.

[15]  Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. , 2015, Nature nanotechnology.

[16]  R. Prozorov,et al.  Topological Hysteresis in the Intermediate State of Type-I Superconductors , 2004, cond-mat/0409553.

[17]  N. D. Lai,et al.  Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal , 2009, 0908.1327.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  E. Brandt GEOMETRIC BARRIER AND CURRENT STRING IN TYPE-II SUPERCONDUCTORS OBTAINED FROM CONTINUUM ELECTRODYNAMICS , 1999 .

[20]  Kock,et al.  Paramagnetic Meissner effect in Bi high-temperature superconductors. , 1992, Physical review letters.

[21]  D. Budker,et al.  Diamond Magnetometry of Superconducting Thin Films , 2013, 1308.2689.

[22]  Y. Liu,et al.  Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2 , 2016, Science Advances.

[23]  R. Prozorov,et al.  Unconventional London penetration depth in single-crystal Ba(Fe0.93Co0.07)2As2 superconductors. , 2008, Physical review letters.

[24]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[25]  D. Budker,et al.  Erratum: Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [Phys. Rev. Lett.104, 070801 (2010)] , 2011 .

[26]  J. Kirtley Fundamental studies of superconductors using scanning magnetic imaging , 2010, 1008.3179.

[27]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[28]  R. Prozorov,et al.  Anomalous Meissner effect in pnictide superconductors , 2010, 1010.4695.

[29]  H. Pastoriza,et al.  Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe 2 (As 1-x P x ) 2 , 2013, 1303.3382.

[30]  F. Balakirev,et al.  Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4 , 2016, 1605.05617.

[31]  Eyal Buks,et al.  Diamond Magnetometry of Meissner Currents in a Superconducting Film , 2016, 1601.07718.

[32]  A. Geim,et al.  Paramagnetic Meissner effect in small superconductors , 1998, Nature.

[33]  Magnetooptic observation of the Meissner effect in YBa2Cu2O7−x single crystals , 1993 .

[34]  Larkin,et al.  Paramagnetic moment in field-cooled superconducting plates: Paramagnetic Meissner effect. , 1995, Physical review. B, Condensed matter.

[35]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[36]  A. Yacoby,et al.  Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. , 2014, Nature nanotechnology.

[37]  D. Naugle,et al.  Electrical resistivity and thermopower of single-crystal RNi 2 B 2 C ÑR5Dy, Ho, Er, TmÖ magnetic superconductors , 1997 .

[38]  Andrew G. Glen,et al.  APPL , 2001 .

[39]  R. Huebener Magnetic Flux Structures in Superconductors , 2001 .

[40]  S. Bending,et al.  Local magnetic probes of superconductors , 1999 .

[41]  Paramagnetic Meissner effect and related dynamical phenomena , 2003, cond-mat/0309020.

[42]  Chen,et al.  Observation of paramagnetic Meissner effect in niobium disks. , 1995, Physical review letters.

[43]  Williams,et al.  Paramagnetic Meissner effect in Nb. , 1996, Physical review. B, Condensed matter.

[44]  W. F. Peck,et al.  Superconductivity in the quaternary intermetallic compounds LnNi2B2C , 1994, Nature.

[45]  R. Prozorov,et al.  Suprafroth in type-I superconductors , 2008 .

[46]  O. Prakash,et al.  The paramagnetic Meissner effect in superconductors at 40 G and flux trapping , 1997 .