Effect of Subtilisin-like Proteinase of Bacillus pumilus 3–19 on Pseudomonas aeruginosa Biofilms

[1]  C. MacPhee,et al.  Functional Amyloid and Other Protein Fibers in the Biofilm Matrix , 2018, Journal of molecular biology.

[2]  S. Matthews,et al.  Ecology and Biogenesis of Functional Amyloids in Pseudomonas , 2018, Journal of molecular biology.

[3]  H. Remaut,et al.  The Role of Functional Amyloids in Bacterial Virulence , 2018, Journal of molecular biology.

[4]  N. Buurma,et al.  Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides , 2018, npj Biofilms and Microbiomes.

[5]  S. Diggle,et al.  Visualizing Antimicrobials in Bacterial Biofilms: Three-Dimensional Biochemical Imaging Using TOF-SIMS , 2017, mSphere.

[6]  T. Coenye,et al.  Metabolic activity, urease production, antibiotic resistance and virulence in dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus , 2017, PloS one.

[7]  V. Lazǎr,et al.  Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies , 2016, Pathogens.

[8]  S. Geerlings Clinical Presentations and Epidemiology of Urinary Tract Infections , 2016, Microbiology spectrum.

[9]  Tarea L. Burton,et al.  Infection and Drug Resistance Dovepress Enzymatic Degradation of in Vitro Staphylococcus Aureus Biofilms Supplemented with Human Plasma , 2022 .

[10]  S. Sze,et al.  Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms , 2016, Nature Communications.

[11]  A. Kayumov,et al.  New Derivatives of Pyridoxine Exhibit High Antibacterial Activity against Biofilm-Embedded Staphylococcus Cells , 2015, BioMed research international.

[12]  L. Cegelski,et al.  Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers , 2015, PloS one.

[13]  C. MacPhee,et al.  Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes , 2015, FEMS microbiology reviews.

[14]  S. Hultgren,et al.  Urinary tract infections: epidemiology, mechanisms of infection and treatment options , 2015, Nature Reviews Microbiology.

[15]  F. Yildiz,et al.  Biofilm Matrix Proteins , 2015, Microbiology spectrum.

[16]  Dieter Jahn,et al.  A Metaproteomics Approach to Elucidate Host and Pathogen Protein Expression during Catheter-Associated Urinary Tract Infections (CAUTIs) , 2015, Molecular & Cellular Proteomics.

[17]  Olivier Roy,et al.  Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. , 2015, International journal of biological macromolecules.

[18]  T. Tolker-Nielsen Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities , 2014, APMIS. Supplementum.

[19]  M. Chapman,et al.  Curli biogenesis: order out of disorder. , 2014, Biochimica et biophysica acta.

[20]  H. Nelis,et al.  Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. , 2014, Pathogens and disease.

[21]  T. Bjarnsholt,et al.  Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms , 2014 .

[22]  D. Schomburg,et al.  Regulatory and Metabolic Networks for the Adaptation of Pseudomonas aeruginosa Biofilms to Urinary Tract-Like Conditions , 2013, PloS one.

[23]  D. Otzen,et al.  Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation , 2013, MicrobiologyOpen.

[24]  G. Guebitz,et al.  Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms , 2013, Biotechnology journal.

[25]  D. Otzen,et al.  Curli Functional Amyloid Systems Are Phylogenetically Widespread and Display Large Diversity in Operon and Protein Structure , 2012, PloS one.

[26]  S. Sørensen,et al.  Culture-Dependent and -Independent Investigations of Microbial Diversity on Urinary Catheters , 2012, Journal of Clinical Microbiology.

[27]  Matthew R Chapman,et al.  Diversity, biogenesis and function of microbial amyloids. , 2012, Trends in microbiology.

[28]  D. Otzen,et al.  Amyloid adhesins are abundant in natural biofilms. , 2007, Environmental microbiology.

[29]  M. Sharipova,et al.  Purification and characterization of a subtilisin-like proteinases secreted in the stationary growth phase of Bacillus amyloliquefaciens H2 , 2007, Biochemistry (Moscow).

[30]  G. Rudenskaya,et al.  Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor. , 2006, Protein expression and purification.

[31]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[32]  Scott J. Hultgren,et al.  Role of Escherichia coli Curli Operons in Directing Amyloid Fiber Formation , 2002, Science.

[33]  U. Gophna,et al.  Curli Fibers Mediate Internalization ofEscherichia coli by Eukaryotic Cells , 2001, Infection and Immunity.

[34]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[35]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.