On the inverse eigenvalue problem for block graphs

The inverse eigenvalue problem of a graph G aims to find all possible spectra for matrices whose (i, j)-entry, for i 6= j, is nonzero precisely when i is adjacent to j. In this work, the inverse eigenvalue problem is completely solved for a subfamily of clique-path graphs, in particular for lollipop graphs and generalized barbell graphs. For a matrix A with associated graph G, a new technique utilizing the strong spectral property is introduced, allowing us to construct a matrix A′ whose graph is obtained from G by appending a clique while arbitrary list of eigenvalues is added to the spectrum. Consequently, many spectra are shown realizable for block graphs.

[1]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[2]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[3]  L. J. Gray,et al.  Construction of a Jacobi matrix from spectral data , 1976 .

[4]  Charles R. Johnson,et al.  On the possible multiplicities of the eigenvalues of a Hermitian matrix whose graph is a tree , 2002 .

[5]  Tianyi Yang,et al.  The combinatorial inverse eigenvalue problem II: all cases for small graphs , 2014 .

[6]  Robin J. Wilson,et al.  An Atlas of Graphs , 1999 .

[7]  M. Fiedler Eigenvalues of Nonnegative Symmetric Matrices , 1974 .

[8]  Helena Šmigoc,et al.  The strong spectral property for graphs , 2019, Linear Algebra and its Applications.

[9]  Tianyi Yang,et al.  The combinatorial inverse eigenvalue problems: complete graphs and small graphs with strict inequality , 2013 .

[10]  Shaun M. Fallat,et al.  The inverse eigenvalue problem of a graph: Multiplicities and minors , 2017, J. Comb. Theory, Ser. B.

[11]  W. Haemers Zero forcing sets and minimum rank of graphs , 2008 .

[12]  Helena Šmigoc,et al.  The inverse eigenvalue problem for nonnegative matrices , 2004 .

[13]  Polona Oblak,et al.  Graphs that allow all the eigenvalue multiplicities to be even , 2014, 1401.1940.

[14]  Shaun M. Fallat,et al.  Minimum number of distinct eigenvalues of graphs , 2013, 1304.1205.

[15]  Ole H. Hald,et al.  Inverse eigenvalue problems for Jacobi matrices , 1976 .

[16]  Harry Hochstadt,et al.  On the construction of a Jacobi matrix from spectral data , 1974 .

[17]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[18]  Shaun M. Fallat,et al.  Generalizations of the Strong Arnold Property and the Minimum Number of Distinct Eigenvalues of a Graph , 2015, Electron. J. Comb..

[19]  Michael C. Wigal,et al.  Ordered multiplicity inverse eigenvalue problem for graphs on six vertices , 2017, 1708.02438.

[20]  Beth Bjorkman,et al.  Applications of analysis to the determination of the minimum number of distinct eigenvalues of a graph , 2017, 1708.01821.

[21]  Warren E. Ferguson,et al.  The construction of Jacobi and periodic Jacobi matrices with prescribed spectra , 1980 .

[22]  Bryan L. Shader,et al.  Construction of matrices with a given graph and prescribed interlaced spectral data , 2013 .

[23]  Charles R. Johnson,et al.  Inverse eigenvalue problems and lists of multiplicities of eigenvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars , 2003 .