Low rank representations for quantum simulation of electronic structure

[1]  Damian S. Steiger,et al.  Quantum computing enhanced computational catalysis , 2020, Physical Review Research.

[2]  Tzu-Ching Yen,et al.  Cartan Subalgebra Approach to Efficient Measurements of Quantum Observables , 2020, PRX Quantum.

[3]  Yuki Kurashige,et al.  A Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits , 2019, 1909.12410.

[4]  Hartmut Neven,et al.  Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization , 2019, Quantum.

[5]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[6]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[7]  Ryan Babbush,et al.  Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization , 2019, Quantum.

[8]  Henrik Koch,et al.  An efficient algorithm for Cholesky decomposition of electron repulsion integrals. , 2018, The Journal of chemical physics.

[9]  G. Chan,et al.  Efficient Ab Initio Auxiliary-Field Quantum Monte Carlo Calculations in Gaussian Bases via Low-Rank Tensor Decomposition. , 2018, Journal of chemical theory and computation.

[10]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2018, npj Quantum Information.

[11]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[12]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[13]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[14]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[15]  Nathan Wiebe,et al.  Hamiltonian Simulation in the Interaction Picture , 2018, 1805.00675.

[16]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[17]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[18]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[19]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2017, 1701.08223.

[20]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[21]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[22]  Kevin J. Sung,et al.  Quantum algorithms to simulate many-body physics of correlated fermions. , 2017, 1711.05395.

[23]  Mario Motta,et al.  Ab initio computations of molecular systems by the auxiliary‐field quantum Monte Carlo method , 2017, 1711.02242.

[24]  B. Peng,et al.  Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. , 2017, Journal of chemical theory and computation.

[25]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[26]  Luigi Cavallo,et al.  The Journal of Chemical Physics 144, 134702 (2016) SupInfo , 2016 .

[27]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[28]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[29]  M. Hastings,et al.  Solving strongly correlated electron models on a quantum computer , 2015, 1506.05135.

[30]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[31]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[32]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[33]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[34]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[35]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[36]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[37]  Yang Yang,et al.  The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r(4)) scaling. , 2013, The Journal of chemical physics.

[38]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[39]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[40]  W. Marsden I and J , 2012 .

[41]  Shiwei Zhang,et al.  Ca+ centers for hydrogen storage: An accurate many-body study with large basis sets , 2011 .

[42]  Shiwei Zhang,et al.  Assessing weak hydrogen binding on Ca+ centers: an accurate many-body study with large basis sets. , 2011, The Journal of chemical physics.

[43]  C. David Sherrill,et al.  Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of π-π interactions in linear acenes , 2010 .

[44]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[45]  Garnet Kin-Lic Chan,et al.  Canonical transformation theory for multireference problems. , 2006, The Journal of chemical physics.

[46]  G. Collins The next generation. , 2006, Scientific American.

[47]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[48]  G. A. Petersson,et al.  The convergence of complete active space self-consistent-field energies to the complete basis set limit. , 2005, The Journal of chemical physics.

[49]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[50]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[51]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[52]  Daniel A. Lidar,et al.  Polynomial-time simulation of pairing models on a quantum computer. , 2001, Physical review letters.

[53]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[54]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[55]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[56]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[57]  A.Yu.Kitaev Quantum measurements and the Abelian Stabilizer Problem , 1995, quant-ph/9511026.

[58]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[59]  Physical Review Letters 63 , 1989 .

[60]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. I. The universal wave and energy operators , 1982 .

[61]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[62]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[63]  THE JOURNAL OF PHYSICAL CHEMISTRY B , 2022 .