Question Answering Using Enhanced Lexical Semantic Models

In this paper, we study the answer sentence selection problem for question answering. Unlike previous work, which primarily leverages syntactic analysis through dependency tree matching, we focus on improving the performance using models of lexical semantic resources. Experiments show that our systems can be consistently and significantly improved with rich lexical semantic information, regardless of the choice of learning algorithms. When evaluated on a benchmark dataset, the MAP and MRR scores are increased by 8 to 10 points, compared to one of our baseline systems using only surface-form matching. Moreover, our best system also outperforms pervious work that makes use of the dependency tree structure by a wide margin.

[1]  H. Eyre Introduction I , 1979, New Surveys in the Classics.

[2]  William A. Woods,et al.  Progress in natural language understanding: an application to lunar geology , 1973, AFIPS National Computer Conference.

[3]  Terry Winograd,et al.  Five Lectures on Artificial Intelligence , 1974 .

[4]  Kuo-Chung Tai,et al.  The Tree-to-Tree Correction Problem , 1979, JACM.

[5]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[6]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[7]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[8]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[9]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[10]  Ellen M. Voorhees,et al.  Building a question answering test collection , 2000, SIGIR '00.

[11]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[12]  Performance Issues and Error Analysis in an Open-Domain Question Answering System , 2002, ACL.

[13]  Daniel Marcu,et al.  A Noisy-Channel Approach to Question Answering , 2003, ACL.

[14]  Dan Roth,et al.  Mapping Dependencies Trees: An Application to Question Answering , 2003 .

[15]  Chris Quirk,et al.  Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel News Sources , 2004, COLING.

[16]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[17]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[18]  David A. Smith,et al.  Quasi-Synchronous Grammars: Alignment by Soft Projection of Syntactic Dependencies , 2006, WMT@HLT-NAACL.

[19]  Mirella Lapata,et al.  Using Semantic Roles to Improve Question Answering , 2007, EMNLP.

[20]  Simone Paolo Ponzetto,et al.  Deriving a Large-Scale Taxonomy from Wikipedia , 2007, AAAI.

[21]  Noah A. Smith,et al.  What is the Jeopardy Model? A Quasi-Synchronous Grammar for QA , 2007, EMNLP.

[22]  Evgeniy Gabrilovich,et al.  Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis , 2007, IJCAI.

[23]  James P. Callan,et al.  Structured retrieval for question answering , 2007, SIGIR.

[24]  Sanda M. Harabagiu,et al.  Cogex: A semantically and contextually enriched logic prover for question answering , 2007, J. Appl. Log..

[25]  L. Getoor,et al.  1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[26]  D. Roth 1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[27]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[28]  Eneko Agirre,et al.  A Study on Similarity and Relatedness Using Distributional and WordNet-based Approaches , 2009, NAACL.

[29]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Noah A. Smith,et al.  Tree Edit Models for Recognizing Textual Entailments, Paraphrases, and Answers to Questions , 2010, NAACL.

[31]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[32]  Ming-Wei Chang,et al.  Discriminative Learning over Constrained Latent Representations , 2010, NAACL.

[33]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[34]  Raymond J. Mooney,et al.  Multi-Prototype Vector-Space Models of Word Meaning , 2010, NAACL.

[35]  Christopher D. Manning,et al.  Probabilistic Tree-Edit Models with Structured Latent Variables for Textual Entailment and Question Answering , 2010, COLING.

[36]  Jianfeng Gao,et al.  Clickthrough-based latent semantic models for web search , 2011, SIGIR.

[37]  Evgeniy Gabrilovich,et al.  A word at a time: computing word relatedness using temporal semantic analysis , 2011, WWW.

[38]  Dan I. Moldovan,et al.  Semantic Representation of Negation Using Focus Detection , 2011, ACL.

[39]  John C. Platt,et al.  Learning Discriminative Projections for Text Similarity Measures , 2011, CoNLL.

[40]  Haixun Wang,et al.  Short Text Conceptualization Using a Probabilistic Knowledgebase , 2011, IJCAI.

[41]  Oren Etzioni Search needs a shake-up , 2011, Nature.

[42]  Geoffrey Zweig,et al.  Polarity Inducing Latent Semantic Analysis , 2012, EMNLP.

[43]  Saif Mohammad,et al.  SemEval-2012 Task 2: Measuring Degrees of Relational Similarity , 2012, *SEMEVAL.

[44]  Haixun Wang,et al.  Probase: a probabilistic taxonomy for text understanding , 2012, SIGMOD Conference.

[45]  Ido Dagan,et al.  A Probabilistic Lexical Model for Ranking Textual Inferences , 2012, *SEMEVAL.

[46]  David A. Ferrucci,et al.  Introduction to "This is Watson" , 2012, IBM J. Res. Dev..

[47]  Sanda M. Harabagiu,et al.  UTD: Determining Relational Similarity Using Lexical Patterns , 2012, *SEMEVAL.

[48]  Wen-tau Yih,et al.  Measuring Word Relatedness Using Heterogeneous Vector Space Models , 2012, HLT-NAACL.

[49]  Roser Morante,et al.  *SEM 2012 Shared Task: Resolving the Scope and Focus of Negation , 2012, *SEMEVAL.

[50]  Geoffrey Zweig,et al.  Combining Heterogeneous Models for Measuring Relational Similarity , 2013, NAACL.

[51]  Chris Callison-Burch,et al.  Answer Extraction as Sequence Tagging with Tree Edit Distance , 2013, NAACL.