Detailed Simulations of Cell Biology with Smoldyn 2.1

Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells.

[1]  Roger Brent,et al.  Automatic generation of cellular reaction networks with Moleculizer 1.0 , 2005, Nature Biotechnology.

[2]  P. Merkey,et al.  Beowulf: harnessing the power of parallelism in a pile-of-PCs , 1997, 1997 IEEE Aerospace Conference.

[3]  Lee Bardwell,et al.  A walk-through of the yeast mating pheromone response pathway , 2004, Peptides.

[4]  Michel Dumontier,et al.  GridCell: a stochastic particle-based biological system simulator , 2008, BMC Systems Biology.

[5]  S. Plimpton,et al.  ChemCell : a particle-based model of protein chemistry and diffusion in microbial cells. , 2003 .

[6]  D. Finkelstein,et al.  Metabolism of alpha-factor by a mating type cells of Saccharomyces cerevisiae. , 1979, The Journal of biological chemistry.

[7]  S. Schnell,et al.  A systematic investigation of the rate laws valid in intracellular environments. , 2006, Biophysical chemistry.

[8]  Samuel A. Isaacson,et al.  Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations , 2006, SIAM J. Sci. Comput..

[9]  Rui Alves,et al.  Tools for kinetic modeling of biochemical networks , 2006, Nature Biotechnology.

[10]  David S. Wishart,et al.  The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli , 2004, Nucleic Acids Res..

[11]  John Parkinson,et al.  Cell++ - simulating biochemical pathways , 2006, Bioinform..

[12]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[13]  Akihiro Kusumi,et al.  Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography , 2006, The Journal of cell biology.

[14]  Jaap A. Kaandorp,et al.  Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli , 2006, Bioinform..

[15]  M Ander,et al.  SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. , 2004, Systems biology.

[16]  Karen Lipkow,et al.  Rapid Turnover of Stereocilia Membrane Proteins: Evidence from the Trafficking and Mobility of Plasma Membrane Ca2+-ATPase 2 , 2006, The Journal of Neuroscience.

[17]  Ryuzo Azuma,et al.  Particle simulation approach for subcellular dynamics and interactions of biological molecules , 2006, First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06).

[18]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[19]  Ned S. Wingreen,et al.  Protease helps yeast find mating partners , 1998, Nature.

[20]  Erik De Schutter,et al.  Monte Carlo Methods for Simulating Realistic Synaptic Microphysiology Using MCell , 2000 .

[21]  H. Berg Random Walks in Biology , 2018 .

[22]  G. L. Hazelbauer,et al.  Cellular Stoichiometry of the Components of the Chemotaxis Signaling Complex , 2004, Journal of bacteriology.

[23]  P. R. ten Wolde,et al.  Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. , 2005, The Journal of chemical physics.

[24]  S. Plimpton,et al.  Microbial cell modeling via reacting diffusive particles , 2005 .

[25]  D. Bray,et al.  Simulated Diffusion of Phosphorylated CheY through the Cytoplasm of Escherichia coli , 2005, Journal of bacteriology.

[26]  Adam P. Arkin,et al.  Stochastic Models of Biological Processes , 2009, Encyclopedia of Complexity and Systems Science.

[27]  D. Bray,et al.  Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. , 1993, Molecular biology of the cell.

[28]  Adam P Arkin,et al.  Phosphatase localization in bacterial chemotaxis: divergent mechanisms, convergent principles , 2005, Physical biology.

[29]  T. Manney,et al.  Expression of the BAR1 gene in Saccharomyces cerevisiae: induction by the alpha mating pheromone of an activity associated with a secreted protein , 1983, Journal of bacteriology.

[30]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[31]  Paul A. Bates,et al.  Probability-based model of protein-protein interactions on biological timescales , 2006, Algorithms for Molecular Biology.

[32]  Luis Serrano,et al.  Space as the final frontier in stochastic simulations of biological systems , 2005, FEBS letters.

[33]  M. Saxton,et al.  Lateral diffusion in an archipelago. The effect of mobile obstacles. , 1987, Biophysical journal.

[34]  Byron Goldstein,et al.  Diffusion Limited Reactions , 2007, SIAM J. Appl. Math..

[35]  Makoto Matsumoto,et al.  SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator , 2008 .

[36]  Tianhai Tian,et al.  A multi-scaled approach for simulating chemical reaction systems. , 2004, Progress in biophysics and molecular biology.

[37]  Joel Keizer,et al.  Diffusion effects on rapid bimolecular chemical reactions , 1987 .

[38]  S. Andrews Accurate particle-based simulation of adsorption, desorption and partial transmission , 2009, Physical biology.

[39]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.

[40]  C. Lumsden,et al.  Stochastic Simulation of Coupled Reaction-Diffusion Processes , 1996 .

[41]  Karen Lipkow,et al.  Model for Protein Concentration Gradients in the Cytoplasm , 2008, Cellular and molecular bioengineering.

[42]  N Le Novère,et al.  Conformational spread in a ring of proteins: a stochastic approach to allostery. , 2001, Journal of molecular biology.

[43]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[44]  Masaru Tomita,et al.  A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation , 2009, Systems and Synthetic Biology.

[45]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[46]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[47]  Francine Berman,et al.  Distributing MCell Simulations on the Grid , 2001, Int. J. High Perform. Comput. Appl..

[48]  L. Hartwell,et al.  Courtship in Saccharomyces cerevisiae: an early cell-cell interaction during mating , 1990, Molecular and cellular biology.

[49]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[50]  Erik De Schutter,et al.  Computational neuroscience : realistic modeling for experimentalists , 2000 .

[51]  C. Pesce,et al.  Regulated cell-to-cell variation in a cell-fate decision system , 2005, Nature.

[52]  Steven S Andrews,et al.  Spatial and stochastic cellular modeling with the Smoldyn simulator. , 2012, Methods in molecular biology.

[53]  S. Andrews Serial rebinding of ligands to clustered receptors as exemplified by bacterial chemotaxis , 2005, Physical biology.

[54]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[55]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[56]  Karen Lipkow,et al.  Changing Cellular Location of CheZ Predicted by Molecular Simulations , 2006, PLoS Comput. Biol..

[57]  H. Kitano,et al.  A quantitative characterization of the yeast heterotrimeric G protein cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Karen Lipkow,et al.  Introducing simulated cellular architecture to the quantitative analysis of fluorescent microscopy. , 2009, Progress in biophysics and molecular biology.

[59]  Leland H. Hartwell,et al.  Courtship in S. cerevisiae: Both cell types choose mating partners by responding to the strongest pheromone signal , 1990, Cell.

[60]  Ismaïl Moukadiri,et al.  Identification of Two Mannoproteins Released from Cell Walls of a Saccharomyces cerevisiae mnn1 mnn9 Double Mutant by Reducing Agents , 1999, Journal of bacteriology.

[61]  T. Bartol,et al.  Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. , 1991, Biophysical journal.

[62]  Erik Lindholm,et al.  NVIDIA Tesla: A Unified Graphics and Computing Architecture , 2008, IEEE Micro.

[63]  Jin Yang,et al.  'On-the-fly' or 'generate-first' modeling? , 2005, Nature Biotechnology.

[64]  M. DELBRtrCK THE BURST SIZE DISTRIBUTION IN THE GROWTH OF BACTERIAL VIRUSES ( BACTERIOPHAGES ) , 2022 .

[65]  D. Bray,et al.  Origins of individual swimming behavior in bacteria. , 1998, Biophysical journal.

[66]  R. Erban,et al.  Reactive boundary conditions for stochastic simulations of reaction–diffusion processes , 2007, Physical biology.

[67]  A. Arkin,et al.  Simulating cell biology , 2006, Current Biology.

[68]  Drew Endy,et al.  Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range , 2011, Proceedings of the National Academy of Sciences.

[69]  Adam P Arkin,et al.  Deviant effects in molecular reaction pathways , 2006, Nature Biotechnology.

[70]  A. Mastro,et al.  Diffusion of a small molecule in the cytoplasm of mammalian cells. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Jaap A. Kaandorp,et al.  Computational methods for diffusion-influenced biochemical reactions , 2007, Bioinform..

[72]  J. Segall,et al.  Polarization of yeast cells in spatial gradients of alpha mating factor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[73]  C. J. Morton-firth Stochastic simulation of cell signaling pathways , 1998 .

[74]  Maryann E Martone,et al.  Evidence for Ectopic Neurotransmission at a Neuronal Synapse , 2005, Science.