An automatic approach to lossy compression of AVIRIS images

Lossy compression of AVIRIS hyperspectral images is considered. An automatic approach to selection of compression parameters depending on noise characteristics in component images is proposed. Several ways of performing lossy compression are discussed and compared. It is shown that in order to minimize distortions and provide a sufficient compression ratio it is reasonable to group the channels according to the evaluated noise variances in subband images and depending upon the sensor that produces sets of subband images. It is shown that for real life images the attained compression ratios can be of the order 8. ..25.

[1]  Nikolay N. Ponomarenko,et al.  Estimation of accessible quality in noisy image compression , 2006, 2006 14th European Signal Processing Conference.

[3]  Vladimir V. Lukin,et al.  Use of minimal inter-quantile distance estimation in image processing , 2006, SPIE Optics + Photonics.

[4]  J. Mielikainen,et al.  Lossless compression of hyperspectral images using lookup tables , 2006, IEEE Signal Processing Letters.

[5]  Giovanni Motta,et al.  Compression of hyperspectral imagery , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[6]  Oleksiy B. Pogrebnyak,et al.  Approaches to Classification of Multichannel Images , 2006, CIARP.

[7]  Kacem Chehdi,et al.  Application to multispectral images of a blind identification system for blur, additive, multiplicative and impulse noises , 2002, 2002 11th European Signal Processing Conference.

[8]  Richard E. Ladner,et al.  Reduced complexity wavelet-based predictive coding of hyperspectral images for FPGA implementation , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[9]  William A. Pearlman,et al.  Three-Dimensional Wavelet-Based Compression of Hyperspectral Images , 2006, Hyperspectral Data Compression.

[10]  William A. Pearlman,et al.  Hyperspectral image compression using three-dimensional wavelet coding , 2003, IS&T/SPIE Electronic Imaging.

[11]  Luciano Alparone,et al.  Near-lossless compression of 3-D optical data , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  Luciano Alparone,et al.  Low-complexity lossless/near-lossless compression of hyperspectral imagery through classified linear spectral prediction , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[13]  Qian Du,et al.  Linear mixture analysis-based compression for hyperspectral image analysis , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Nikolay N. Ponomarenko,et al.  DCT Based High Quality Image Compression , 2005, SCIA.

[15]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Nikolay N. Ponomarenko,et al.  Blind evaluation of additive noise variance in textured images by nonlinear processing of block DCT coefficients , 2003, IS&T/SPIE Electronic Imaging.

[17]  A. Barducci,et al.  CHRIS-PROBA PERFORMANCE EVALUATION : SIGNAL-TO-NOISE RATIO , INSTRUMENT EFFICIENCY AND DATA QUALITY FROM ACQUISITIONS OVER SAN ROSSORE ( ITALY ) TEST SITE , 2005 .

[18]  V. Lukin,et al.  Preliminary Automatic Analysis of Characteristics of Hypespectral Aviris Images , 2006, 2006 International Conference on Mathematical Methods in Electromagnetic Theory.

[19]  Russell M. Mersereau,et al.  Lossy compression of noisy images , 1998, IEEE Trans. Image Process..

[20]  Steven P. Brumby,et al.  Feature extraction from hyperspectral images compressed using the JPEG-2000 standard , 2002, Proceedings Fifth IEEE Southwest Symposium on Image Analysis and Interpretation.

[21]  Nikolay N. Ponomarenko,et al.  Quasi-optimal compression of noisy optical and radar images , 2006, SPIE Remote Sensing.