Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification.

AIMS Polydopamine coating is emerging as a useful method of surface functionalization due to the ability of this compound to form a nanometer-scale organic thin film on virtually any material surface to which proteins, peptides, oligonucleotides, metal ions or synthetic polymers are able to be attached. The unique properties of polydopamine make this technique suitable for nanomedicine. To facilitate the use of polydopamine, evaluation of toxicity is of great importance. In this article, we investigated the in vivo toxicity of polydopamine. RESULTS We found that the polydopamine functions as a biocompatible layer, attenuating adverse biological responses caused by intrinsic properties of the coated material. One-step polydopamine coating greatly reduced the inflammatory response to poly-L-lactic acid surfaces and the immunological responses of blood on quantum dots were also reduced. CONCLUSION Our results indicate that polydopamine provides a versatile platform that can reduce the in vivo toxicity of biomaterials that contact tissue or blood.

[1]  Sung Min Kang,et al.  Mussel-inspired encapsulation and functionalization of individual yeast cells. , 2011, Journal of the American Chemical Society.

[2]  Haeshin Lee,et al.  Facile DNA immobilization on surfaces through a catecholamine polymer. , 2011, Angewandte Chemie.

[3]  Sung Min Kang,et al.  Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel‐Inspired Chemistry , 2011 .

[4]  Sung Min Kang,et al.  One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. , 2010, Angewandte Chemie.

[5]  Sook Hee Ku,et al.  Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. , 2010, Biomaterials.

[6]  Chan Beum Park,et al.  Mussel-inspired transformation of CaCO3 to bone minerals. , 2010, Biomaterials.

[7]  Wei-min Liu,et al.  Multi-walled carbon nanotube supported Pd and Pt nanoparticles with high solution affinity for effective electrocatalysis , 2010 .

[8]  Cheng-Kang Lee,et al.  Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles , 2010 .

[9]  Haeshin Lee,et al.  Mussel‐Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization , 2010 .

[10]  Liqun Zhang,et al.  Surface initiated ATRP of acrylic acid on dopamine‐functionalized AAO membranes , 2010 .

[11]  Feng Zhou,et al.  Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes , 2010 .

[12]  Liqun Zhang,et al.  Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization , 2010 .

[13]  Haeshin Lee,et al.  General functionalization route for cell adhesion on non-wetting surfaces. , 2010, Biomaterials.

[14]  Wei-min Liu,et al.  Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application , 2010 .

[15]  Haeshin Lee,et al.  Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[16]  Sung Min Kang,et al.  Norepinephrine: material-independent, multifunctional surface modification reagent. , 2009, Journal of the American Chemical Society.

[17]  Haeshin Lee,et al.  Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings , 2009, Advanced materials.

[18]  Mehmet R Dokmeci,et al.  Toxicity of CdSe Nanoparticles in Caco-2 Cell Cultures , 2008, Journal of nanobiotechnology.

[19]  K. Gademann,et al.  Antimicrobial surfaces through natural product hybrids. , 2008, Angewandte Chemie.

[20]  B. Nemery,et al.  Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge , 2008, Environmental health perspectives.

[21]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[22]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[23]  Norbert F Scherer,et al.  Single-molecule mechanics of mussel adhesion , 2006, Proceedings of the National Academy of Sciences.

[24]  S. Jee,et al.  Dopamine‐induced apoptosis in human melanocytes involves generation of reactive oxygen species , 2006, The British journal of dermatology.

[25]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[26]  Hedi Mattoussi,et al.  Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy , 2004, Nature Medicine.

[27]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[28]  Bruce P. Lee,et al.  Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. , 2003, Journal of the American Chemical Society.

[29]  J Herbert Waite,et al.  Adhesion à la Moule1 , 2002, Integrative and comparative biology.

[30]  J. Waite,et al.  Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. , 2001, Biomacromolecules.

[31]  J. Bermak,et al.  Evidence for non‐oxidative dopamine cytotoxicity: potent activation of NF‐κ B and lack of protection by anti‐oxidants , 2001, Journal of neurochemistry.

[32]  J. Waite,et al.  Polyphosphoprotein from the adhesive pads of Mytilus edulis. , 2001, Biochemistry.

[33]  K. Biemann,et al.  Hydroxyarginine-containing Polyphenolic Proteins in the Adhesive Plaques of the Marine Mussel Mytilus edulis(*) , 1995, The Journal of Biological Chemistry.

[34]  A. B. Yule,et al.  Adhesion and substrate choice in mussels and barnacles , 1985 .

[35]  M. Yaszemski,et al.  Introduction to Biomaterials Science , 2020, Biomaterials Science.

[36]  Q. Wei,et al.  Improving the blood compatibility of material surfaces via biomolecule-immobilized mussel-inspired coatings. , 2011, Journal of biomedical materials research. Part A.

[37]  P. Messersmith,et al.  Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. , 2010, Biomaterials.

[38]  Ikuko Miyazaki,et al.  Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease , 2009, Neurotoxicity Research.

[39]  Papov,et al.  海産イガイ,Mytilus edulis(イガイ科)の接着プラーク内のヒドロキシアルギニン含有性ポリフェーノール蛋白質 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1995 .