Three-point finite-difference schemes, Padé and the spectral Galerkin method. I. One-sided impedance approximation
暂无分享,去创建一个
[1] Sergey Pavlovich Suetin,et al. On the Rate of Convergence of Padé Approximants of Orthogonal Expansions , 1992 .
[2] J. Boyd. Chebyshev & Fourier Spectral Methods , 1989 .
[3] J. Cooper,et al. Theory of Approximation , 1960, Mathematical Gazette.
[4] P. Petrushev,et al. Rational Approximation of Real Functions , 1988 .
[5] Siam J. Sci. SPECTRAL ELEMENTS ON INFINITE DOMAINS , 1998 .
[6] I. S. Kats. SPECTRAL FUNCTIONS OF A STRING , 1983 .
[7] Amir Averbuch,et al. A Fast Spectral Solver for a 3D Helmholtz Equation , 1999, SIAM J. Sci. Comput..
[8] A. Gončar,et al. ON MARKOV'S THEOREM FOR MULTIPOINT PADÉ APPROXIMANTS , 1978 .
[9] S. Orszag. Spectral methods for problems in complex geometries , 1980 .
[10] Radakovič. The theory of approximation , 1932 .
[11] Vladimir Druskin,et al. Gaussian spectral rules for second order finite-difference schemes , 2000, Numerical Algorithms.
[12] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[13] Vladimir Druskin,et al. Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain , 1999, SIAM J. Numer. Anal..
[14] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[15] Vladimir Druskin,et al. Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .
[16] Vladimir Druskin,et al. Application of the Difference Gaussian Rules to Solution of Hyperbolic Problems , 2000 .
[17] I. Babuska,et al. Finite Element Analysis , 2021 .
[18] Kelly Black. Spectral Elements on Infinite Domain , 1998, SIAM J. Sci. Comput..
[19] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .