Rate-Dependent Analysis of the Asymptotic Behavior of Channel Polarization

We consider the asymptotic behavior of the polarization process in the large block-length regime when transmission takes place over a binary-input memoryless symmetric channel W. In particular, we study the asymptotics of the cumulative distribution P(Zn ≤ z), where {Zn} is the Bhattacharyya process associated with W, and its dependence on the rate of transmission. On the basis of this result, we characterize the asymptotic behavior, as well as its dependence on the rate, of the block error probability of polar codes using the successive cancellation decoder. This refines the original asymptotic bounds by Arıkan and Telatar. Our results apply to general polar codes based on l×l kernel matrices. We also provide asymptotic lower bounds on the block error probability of polar codes using the maximum a posteriori (MAP) decoder. The MAP lower bound and the successive cancellation upper bound coincide when l = 2, but there is a gap for l > 2.

[1]  Shlomo Shamai,et al.  Secrecy-Achieving Polar-Coding for Binary-Input Memoryless Symmetric Wire-Tap Channels , 2010, ArXiv.

[2]  Toshiyuki Tanaka,et al.  Channel polarization on q-ary discrete memoryless channels by arbitrary kernels , 2010, 2010 IEEE International Symposium on Information Theory.

[3]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[4]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[5]  Emre Telatar,et al.  Polar Codes for the m-User MAC and Matroids , 2010, ArXiv.

[6]  Rüdiger L. Urbanke,et al.  The compound capacity of polar codes , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[8]  Emre Telatar,et al.  On the construction of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[9]  Andrea Montanari,et al.  An empirical scaling law for polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Rüdiger L. Urbanke,et al.  On the scaling of polar codes: I. The behavior of polarized channels , 2010, 2010 IEEE International Symposium on Information Theory.

[12]  Mayank Bakshi,et al.  Concatenated Polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[13]  Rüdiger L. Urbanke,et al.  On the scaling of polar codes: II. The behavior of un-polarized channels , 2010, 2010 IEEE International Symposium on Information Theory.

[14]  Toshiyuki Tanaka,et al.  Refined rate of channel polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[15]  Toshiyuki TANAKA,et al.  Source and Channel Polarization over Finite Fields , 2014 .

[16]  Shlomo Shamai,et al.  Capacity-Achieving Polar Codes for Arbitrarily Permuted Parallel Channels , 2010, IEEE Transactions on Information Theory.

[17]  Toshiyuki Tanaka On speed of channel polarization , 2010, 2010 IEEE Information Theory Workshop.

[18]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[19]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[20]  Rüdiger L. Urbanke,et al.  Finite-Length Scaling for Polar Codes , 2013, IEEE Transactions on Information Theory.

[21]  Ryuhei Mori Properties and Construction of Polar Codes , 2010, ArXiv.

[22]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[23]  Rüdiger L. Urbanke,et al.  Polar codes: Characterization of exponent, bounds, and constructions , 2009, 2009 IEEE International Symposium on Information Theory.

[24]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[25]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[26]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[27]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[28]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[29]  R. Urbanke,et al.  Polar codes are optimal for lossy source coding , 2009 .

[30]  Shlomo Shamai,et al.  Polar coding for reliable communications over parallel channels , 2010, 2010 IEEE Information Theory Workshop.

[31]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.